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ABSTRACT
Ideally, any experienced investigator with the right tools should
be able to reproduce a finding published in a peer-reviewed
biomedical science journal. In fact, however, the reproducibility
of a large percentage of published findings has been ques-
tioned. Undoubtedly, there are many reasons for this, but one
reason may be that investigators fool themselves due to a poor
understanding of statistical concepts. In particular, investigators

often make these mistakes: 1) P-hacking, which is when you
reanalyze a data set in many different ways, or perhaps reanalyze
with additional replicates, until you get the result you want; 2)
overemphasis on P values rather than on the actual size of the
observed effect; 3) overuse of statistical hypothesis testing, and
being seduced by the word “significant”; and 4) over-reliance on
standard errors, which are often misunderstood.

Introduction
Ideally, any experienced investigator with the right tools

should be able to reproduce a finding published in a peer-
reviewed biomedical science journal. In fact, however, the
reproducibility of a large percentage of published findings has
been questioned. Investigators at Bayer Healthcare were
reportedly able to reproduce only 20–25% of 67 preclinical
studies (Prinz et al., 2011), and investigators at Amgen were
able to reproduce only 6 of 53 studies in basic cancer biology
despite often cooperating with the original investigators
(Begley and Ellis, 2012). This problem has been featured in
a cover story in The Economist (Anonymous, 2013) and has
attracted the attention of the National Institutes of Health
leaders (Collins and Tabak, 2014).
Why can so few findings be reproduced? Undoubtedly, there

are many reasons. But in many cases, I suspect that inves-
tigators fooled themselves due to a poor understanding of
statistical concepts (see Marino, 2014, for a good review of this
topic). Here I identify five common misconceptions about
statistics and data analysis, and explain how to avoid them.
My recommendations are written for pharmacologists and other

biologists publishing experimental research using commonly
used statistical methods. They would need to be expanded for
analyses of clinical or observational studies and for Bayesian
analyses. This editorial is about analyzing and displaying data,
and so does not address issues of experimental design.
My experience comes from basic pharmacology research

conducted decades ago, followed by 25 years of answering
e-mail questions from scientists needing help analyzing data
with GraphPad Prism,1 and authoring three editions of the
text Intuitive Biostatistics (Motulsky, 2014a).

Misconception 1: P-Hacking Is OK
Statistical results can only be interpreted at face value

when every choice in the data analysis was performed exactly
as planned, and documented as part of the experimental
design. From my conversations with scientists, it seems that
this rule is commonly broken in reports of basic research.
Instead, analyses are often performed as shown in Fig. 1.
Collect and analyze some data. If the results are not sta-
tistically significant but show a difference or trend in the
direction you expected, collect some more data and reanalyze.
Or try a different way to analyze the data: remove a few
outliers; transform to logarithms; try a nonparametric test;
redefine the outcome by normalizing (say, dividing by each
animal’s weight); use a method to compare one variable while
adjusting for differences in another; the list of possibilities is
endless. Keep trying until you obtain a statistically significant
result or until you run out of money, time, or curiosity.
The results from data collected this way cannot be in-

terpreted at face value. Even if there really is no difference (or
no effect), the chance of finding a “statistically significant”

This Commentary evolved from multiple conversations between the author
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Archives of Pharmacology in a collaborative effort to help investigators and read-
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search studies.
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result exceeds 5%. The problem is that you introduce bias
when you choose to collect more data (or analyze the data
differently) only when the P value is greater than 0.05. If the
P value was less than 0.05 in the first analyses, it might
be larger than 0.05 after collecting more data or using an
alternative analysis. But you would never see this if you only
collected more data or tried different data analysis strategies
when the first P value was greater than 0.05.
Exploring your data can be a very useful way to generate

hypotheses and make preliminary conclusions, but all such
analyses need to be clearly labeled, and then retested with new
data.
There are three related terms that describe this problem.
Ad-Hoc Sample Size Selection. This is when you did not

choose a sample size in advance, but just kept going until you
liked the results. Figure 2 demonstrates the problem with ad-
hoc sample size determination. Distinguish unplanned ad-hoc
sample size decisions from planned “adaptive” sample size

methods that make you “pay” for the increased versatility in
sample size collection by requiring a stronger effect to reach
“significance” (Food and Drug Administration, 2010; Kairalla
et al., 2012).
HARKing, or Hypothesizing after the Result Is Known

(Kerr, 1998). This is when you analyze the data many different
ways (say different subgroups), discover an intriguing relation-
ship, and then publish the data so it appears that the hypothesis
was stated before the datawere collected (Fig. 3). This is a form of
multiple comparisons (Berry, 2007). Kriegeskorte and colleagues
(2009) call this double dipping, as you are using the same data
both to generate a hypothesis and to test it.
P-Hacking. This is a general term that encompasses dy-

namic sample size collection, HARKing, andmore. It was coined
by Simmons et al. (2011), who also use the phrase “too many
investigator degrees of freedom.” P-hacking is especially mis-
leading when it involves changing the actual values analyzed.
Examples include ad-hoc sample size selection (see earlier

Fig. 1. The many forms of P-hacking. When you P-hack, the results cannot be interpreted at face value. Not shown in the figure is that, after trying
various forms of P-hacking without getting a small P value, you will eventually give up when you run out of time, funds, or curiosity.
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discussion), switching to an alternate control group (if you do
not like the first results and your experiment involved two or
more control groups), trying various combinations of indepen-
dent variables to include in a multiple regression (whether the
selection is manual or automatic), and analyzing various
subgroups of the data. Reanalyzing a single data set in various
ways is also P-hacking but will not usuallymislead you quite as
much.
My suggestions for authors are as follows:

• For each figure or table, clearly state whether the
sample size was chosen in advance, and whether every
step used to process and analyze the data was planned
as part of the experimental protocol.

• If you use any form of P-hacking, label the conclusions
as “preliminary.”

Misconception 2: P Values Convey Information
about Effect Size

To compute a P value, you first must clearly define a null
hypothesis—usually that two means (or proportions or EC50

values, etc.) are identical. Given some assumptions, the
P value is the probability of seeing an effect as large as or
larger than you observed in the current experiment if in fact
the null hypothesis was true. But note that the P value gives
you no information about how large the difference (or effect)
is. Figure 4 demonstrates this point by plotting the P values

that result from comparing two samples in experiments with
different sample sizes. Even though the means and standard
deviations are identical for each simulated experiment, the
P values are far from identical. With n 5 3 in each group, the

Fig. 2. The problem of ad-hoc sample size selection. I simulated 10,000
experiments sampling data from a Gaussian distribution with means of 5.0
and standard deviations of 1.0, and comparing two samples with n = 5 each
using an unpaired t test. The first column shows the percentage of those
experiments with a P value less than 0.05. Since both populations have the
same mean, the null hypothesis is true, and so (as expected) about 5.0% of
the simulations have P values less than 0.05. For the experiments where the
P value was higher than 0.05, I added five more values to each group. The
second column (n = 5 + 5) shows the fraction of P values where the P value
was less than 0.05 either in the first analysis with n = 5 or after increasing
the sample size to 10. For the third column, I added yet another 5 values to
each group if the P value was greater than 0.05 for both of the first two
analyses. Now 13% of the experiments (not 5%) have reached a P value less
than 0.05. For the fourth column, I looked at all 10,000 of the simulated
experiments with n = 15. As expected, very close to 5% of those experiments
had P values less than 0.05. The higher fraction of “significant” findings in
the n = 5 + 5 and n = 5 + 5 + 5 is due to the fact that I increased sample size
only when the P value was high with smaller sample sizes. In many cases,
when the P value was less than 0.05 with n = 5, the P value would have been
higher than 0.05 with n = 10 or 15, but an experimenter seeing the small
P value with the small sample size would not have increased sample size.

Fig. 3. The problem of HARKing. (Reprinted from http://xkcd.com/882
under the CC BY-NC 2.5 license.)
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P value is 0.65. When n 5 300 in each group, the P value is
0.000001.
The dependence of P values on sample size can lead to two

problems.
A Large P Value Is Not Proof of No (or Little)

Effect. The top two rows of Table 1 presents the results of
two simulated experiments. The two P values are both about
0.6, but the two experiments lead to very different conclusions.
In experiment A (from Table 1), the difference between

means in the experimental sample is 10, so the difference
equals 1% of the mean of treatment 1. Assuming random
sampling from Gaussian populations, the 95% confidence
interval for the difference between the two population means
ranges from230 to 50. In other words, the data are consistent
(with 95% confidence) with a decrease of 3%, an increase of
5%, or anything in between. The interpretation depends on
the scientific context and the goals of the experiment, but in
most contexts these results can be summarized simply: the
data are consistent with a tiny decrease, no change, or a tiny
increase. These are solid negative data.
Experiment B is very different. The difference between

means is larger, and the confidence interval is much wider
(because the sample size is so small). Assuming random
sampling from Gaussian populations, the data are consistent
(with 95% confidence) with anything between a decrease of

18% and an increase of 28%. The data are consistent with a large
decrease, a small decrease, no difference, a small increase, or
a large increase. These data lead to no useful conclusion at all.
An experiment like this should not be published.
A Small P Value Is Not Proof of a Large Effect. The

bottom two rows of Table 1 presents the results of two
simulated experiments where both P values are 0.001, but
again two experiments lead to very different conclusions.
In experiment C (from Table 1), the difference between

means in the experimental sample is only 2 (so the difference
equals 2% of the mean of treatment 1). Assuming random
sampling from Gaussian populations, the 95% confidence
interval for the difference between the two population means
ranges from 0.8 to 3.2. In other words, the data are con-
sistent (with 95% confidence) with anything between an
increase of 0.8% and an increase of 3.2%. How to interpret
that depends on the scientific context and the goals of the
experiment, but in most contexts this can be summarized
simply: the data clearly demonstrate an increase, but that
increase is tiny.
Experiment D is very different. The difference between

means is 35 (so 35% of the control mean), and the confidence
interval extends from an increase of 23.7% to an increase of
46.3%. The data clearly demonstrate that there is an increase
that is (with 95% confidence) substantial.
My suggestions for authors are as follows:

• Always show and emphasize the effect size (as differ-
ence, percent difference, ratio, or correlation coefficient)
along with its confidence interval.

• Consider omitting the reporting of P values.

Misconception 3: Statistical Hypothesis Testing
and Reports of Statistical Significance Are

Necessary in Experimental Research
Statistical hypothesis testing is a way to make a crisp decision from

one analysis. If the P value is less than a preset value (usually 0.05),
the result is deemed “statistically significant” and you make one
decision. Otherwise, the result is deemed “not statistically significant”
and you make the other decision. This is helpful in quality control and
some clinical studies. It also is useful when you rigorously compare
the fits of two scientifically sensible models to your data, and choose
one to guide your interpretation of the data and to plan future
experiments.

Here are five reasons to avoid use of statistical hypothesis testing in
experimental research:

TABLE 1
Identical P values with very different interpretations
Experiments A and B have identical P values, but the scientific conclusion is very different. The interpretation depends upon the scientific context,
but in most fields experiment A would be solid negative data proving that there either is no effect or that the effect is tiny. In contrast, experiment
B has such a wide confidence interval as to be consistent with nearly any hypothesis. Those data simply do not help answer your scientific
question. Similarly, experiments C and D have identical P values, but should be interpreted differently. In most experimental contexts,
experiment C demonstrates convincingly that, although the difference is not zero, it is quite small. Experiment D provides convincing evidence
that the effect is large.

Treatment 1 Treatment 2 Difference between
Means P Value 95% CI of the Difference

between Means

mean 6 S.D. (n)

Experiment A 1000 6 100 (50) 990.0 6 100 (50) 10 0.6 230 to 50
Experiment B 1000 6 100 (3) 950.0 6 100 (3) 50 0.6 2177 to 277
Experiment C 100 6 5.0 (135) 102 6 5.0 (135) 2 0.001 0.8 to 3.2
Experiment D 100 6 5.0 (3) 135 6 5.0 (3) 35 0.001 24 to 46

CI, confidence interval.

Fig. 4. P values depend upon sample size. This graph shows P values
computed by unpaired t tests comparing two sets of data. The means of the
two samples are 10 and 12. The S.D. of each sample is 5.0. I computed a t test
using various sample sizes plotted on the x-axis. You can see that theP value
depends on sample size. Note that both axes use a logarithmic scale.
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• The need to make a crisp decision based on one analysis is rare
in basic research. A decision about whether to place an asterisk
on a figure does not count. If you are not planning to make
a crisp decision, the whole idea of statistical hypothesis testing
is not helpful.

• Statistical hypothesis testing “does not tell us what we want to
know, and we so much want to know what we want to know
that, out of desperation, we nevertheless believe that it does”
(Cohen, 1994). Statistical hypothesis testing has even been
called a cult (Ziliak and McCloskey, 2008). The question we
want to answer is: Given these data, how likely is the null
hypothesis? The question that a P value answers is: Assuming
the null hypothesis is true, how unlikely are these data? These
two questions are distinct, and so have distinct answers.

• Scientists who intend to use statistical hypothesis testing often
end up not using it. If the P value is just a bit larger than 0.05,
scientists often avoid the strict use of hypothesis testing and
instead apply the “time-honoured tactic of circumlocution to
disguise the non-significant result as something more interesting”
(M. Hankins, http://mchankins.wordpress.com/2013/04/21/still-
not-significant-2/). They do this by using terms such as “almost
significant,” “bordered on being statistically significant,” “a sta-
tistical trend toward significance,” or “approaching significance.”
Hankins lists 468 such phrases found in published papers.

• The 5% significance threshold is often misunderstood. If you use
a P value to make a decision, of course it is possible that you will
make the wrong decision. In some cases, the P value will be tiny
just by chance, even though the null hypothesis of no difference
is actually true. In these cases, a conclusion that a finding is
statistically significant is a false positive, and you will have
made what is called a type I error.2 Many scientists mistakenly
believe that the chance of making a false-positive conclusion is
5%. In fact, in many situations, the chance of making a type I
false-positive conclusion is much higher than 5% (Colquhoun,
2014). For example, in a situation where you expect the null
hypothesis to be true 90% of the time (say you are screening
lightly prescreened compounds, so expect 10% to work), you
have chosen a sample size large enough to ensure 80% power,
and you use the traditional 5% significance level, the false
discovery rate is not 5% but rather is 36% (the calculations are
shown in Table 2). If you only look at experiments in which the
P value is just a tiny bit less than 0.050, the probability of a false
positive rises to 79% (H. J. Motulsky, http://www.graphpad.com/
support/faqid/1923/). Ioannidis (2005) used calculations such as
these (and other considerations) to argue that most published
research findings are probably false.

• The word “significant” is often misunderstood. The problem is that
“significant” has two distinct meanings in science (Motulsky,
2014b). One meaning is that a P value is less than a preset
threshold (usually 0.05). The other meaning of “significant” is that
an effect is large enough to have a substantial physiologic or clinical
impact. These two meanings are completely different, but are often
confused.

My suggestions for authors are as follows:

• Only report statistical hypothesis testing (and place signifi-
cance asterisks on figures) when you will make a decision
based on that one analysis.

• Never use the word “significant” in a scientific paper. If you use
statistical hypothesis testing to make a decision, state the
P value, your preset P value threshold, and your decision.
When discussing the possible physiologic or clinical impacts of
a finding, use other words.

Misconception 4: The Standard Error of the
Mean Quantifies Variability

Pharmacology journals are full of graphs and tables
showing the mean and the S.E.M.
Here is a quick review. The S.D. quantifies variation among

a set of values, but the S.E.M. does not. The S.E.M. is
computed by dividing the S.D. by the square root of the
sample size. With large samples, the S.E.M. will be tiny even
if there is a lot of variability.
One problem with plotting or displaying the mean 6 S.E.M.

is that some people viewing the graph or table may mistakenly
think that the error bars show the variability of the data. A
second problem with reporting means with S.E.M. is that the
range mean 6 S.E.M. cannot be rigorously interpreted. The
S.E.M. gives information about how precisely you have de-
termined the population mean. So the range mean6 S.E.M. is
a confidence interval, but the confidence level depends on the
sample size.With large samples, that range is a 68% confidence
interval of the mean. When n5 3, that range is only a 58%
confidence interval.3

My suggestions for authors are as follows:

• If you want to display the variability among the values,
show raw data (which is not done often enough, in my
opinion). If showing the raw data would make the graph
hard to read, show instead a box-whisker plot, a fre-
quency distribution, or the mean and S.D.

• If you want readers to see how precisely you have
determined the mean, report a confidence interval (95%
confidence intervals are standard). Figure 5 shows
a data set plotted using all of these methods.

• When reporting results from regression, show the 95%
confidence interval of each parameter rather than
standard errors.

TABLE 2
The false discovery rate when P , 0.05
This table tabulates the theoretical results of 1000 experiments where the prior
probability that the null hypothesis is false is 10%, the sample size is large enough so
that the power is 80%, and the significance level is the traditional 5%. In 100 of the
experiments (10%), there really is an effect (the null hypothesis is false), and you will
obtain a “statistically significant” result (P , 0.05) in 80 of these (because the power
is 80%). In 900 experiments, the null hypothesis is true, but you will obtain
a statistically significant result in 45 of them (because the significance threshold is
5%, and 5% of 900 is 45). In total, you will obtain 80 + 45 = 125 statistically
significant results, but 45/125 = 36% of these will be false positive. The proportion of
conclusions of “statistical significance” that are false discoveries or false positives
depends on the context of the experiment, as expressed by the prior probability (here,
10%). If you do obtain a small P value and reject the null hypothesis, you will
conclude that the values in the two groups were sampled from different distributions.
As noted earlier, there may be a high chance that you made a false-positive
conclusion due to random sampling. But even if the conclusion is “true” from
a statistical point of view and not a false positive due to random sampling, the effect
may have occurred for a reason different from the one you hypothesized. When
thinking about why an effect occurred, ignore the statistical calculations, and instead
think about blinding, randomization, positive controls, negative controls, calibration,
biases, and other aspects of experimental design.

P , 0.05 P . 0.05 Total

Really is an effect 80 20 100
No effect (null hypothesis true) 45 855 900
Total 125 875 1000

2In contrast, a type II error, or false-negative, is when there really is
a difference but the result in your experiment is not statistically
significant.

3Computed using this Excel formula:5(1-T.DIST.2T(1.0,2)). The first
argument (1.0) is the number of S.E.Ms. (in each direction) included
in the confidence interval, and the second argument (2) is the number
of degrees of freedom, which equals n21.
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Misconception 5: You Do Not Need to Report the
Details

The methods section of every paper should report the
methods with enough detail that someone else could re-
produce your work. This applies to statistical methods just as
it does to experimental methods.
My suggestions for authors are as follows:

• When reporting a sample size, explain exactly what
you counted. Did you count replicates in one exper-
iment (technical replicates), repeat experiments, the
number of studies pooled in a meta-analysis, or some-
thing else?

• If you eliminated any outliers, state how many out-
liers you eliminated, the rule used to identify them,
and whether this rule was chosen before collecting
data.

• If you normalized data, explain exactly how you defined
100% and 0%.

• When possible, report the P value up to at least a few
digits of precision, rather than just stating whether the
P value is less than or greater than an arbitrary
threshold. For each P value, state the null hypothesis it
tests if there is any possible ambiguity.

• When reporting a P value that compares two groups,
state whether the P value is one- or two-tailed. If you
report a one-tailed P value, state that you recorded
a prediction for the direction of the effect (for example,
increase or decrease) before you collected any data and
what this prediction was. If you did not record such
a prediction, report a two-tailed P value.

• Explain the details of the statistical methods you used.
For example, if you fit a curve using nonlinear regression,
explain precisely which model you fit to the data and
whether (and how) data were weighted. Also, state the
full version number and platform of the software you use.

• Consider posting files containing both the raw data
and the analyses so other investigators can see the
details.

Summary
The physicist E. Rutherford supposedly said, “If your

experiment needs statistics, you ought to have done a better
experiment.”4 There is a lot of truth to that statement when
you are working in a field with a very high signal-to-noise ratio.
In these fields, statistical analysis may not be necessary. But if
you work in a field with a lower signal-to-noise ratio, or are
trying to compare the fits of alternative models that do not
differ all that much, you need statistical analyses to properly
quantify your confidence in your conclusions.
I suspect that one of the reasons that the results reported in

many papers cannot be reproduced is that statistical analyses
are often performed as a quick afterthought, with the goal to
sprinkle asterisks on figures and the word “significant” on
conclusions. The suggestions I propose in this Commentary can
all be summarized simply: If you are going to analyze your data
using statistical methods, plan the methods carefully, do the

analyses seriously, and report the data, methods, and results
completely.
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Fig. 5. Standard error bars do not show variability and do a poor job of
showing precision. The figure plots one data set six ways. The left-most
lane shows a scatter plot of every value, and so is the most informative.
The next lane shows a box-and-whisker plot showing the range of the data,
the quartiles, and the median (whiskers can be plotted in various ways,
and do not always show the range). The third lane plots the median and
quartiles. This shows less detail, but still demonstrates that the
distribution is a bit asymmetric. The fourth lane plots mean with error
bars showing plus or minus one standard deviation. Note that these error
bars, by definition, are symmetrical and so give no hint about the
asymmetry of the data. The next two lanes are different from the others as
they do not show scatter. Instead they show how precisely we know the
population mean, accounting for scatter and sample size. The fifth lane
shows the mean with error bars showing the 95% confidence interval (CI)
of the mean. The sixth (right-most) lane plots the mean plus or minus one
standard error of the mean, which does not show variation and does a poor
job of showing precision.

4The quotation is widely attributed to this famous physicist, but I
cannot find an actual citation.
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