Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Comparison of the Effects of Clozapine, Risperidone, and Olanzapine on Ketamine-Induced Alterations in Regional Brain Metabolism

Gary E. Duncan, Seiya Miyamoto, Jeremy N. Leipzig and Jeffrey A. Lieberman
Journal of Pharmacology and Experimental Therapeutics April 2000, 293 (1) 8-14;
Gary E. Duncan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Seiya Miyamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeremy N. Leipzig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey A. Lieberman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ability of subanesthetic doses ofN-methyl-d-aspartate (NMDA) antagonists to induce positive, negative, and cognitive schizophrenia-like symptoms suggests that reduced NMDA receptor function may contribute to the pathophysiology of schizophrenia. An increasing body of evidence indicates that antipsychotic drugs, especially those with “atypical” properties, can antagonize the effects of NMDA antagonists in a variety of experimental paradigms. We demonstrated previously that clozapine, the prototype of atypical antipsychotics, but not haloperidol, the typical antipsychotic, blocked ketamine-induced alterations in brain metabolism. In this study, effects of clozapine were compared with two of the newer atypical antipsychotic drugs, risperidone and olanzapine, on ketamine-induced alterations in regional [14C]2-deoxyglucose (2-DG) uptake. A subanesthetic dose of ketamine (25 mg/kg) induced robust increases in 2-DG uptake in limbic cortical regions, hippocampal formation, nucleus accumbens, and basolateral amygdala. Pretreatment of rats with risperidone (0.3 mg/kg) before ketamine administration did not alter the effects of ketamine. These data suggest that novel pharmacological properties may contribute to the effects of clozapine in this model, in addition to the well characterized actions at D2 and 5HT2A receptors. In contrast to the results with risperidone, olanzapine blocked ketamine-induced increases in 2-DG uptake. However, a higher dose of olanzapine (10 mg/kg) was required to completely block the effects of ketamine than would be expected if D2 and 5HT2 receptor blocking properties of the drug were solely responsible for its action. The results suggest that the ketamine challenge 2-DG paradigm may be a useful model to identify antipsychotic drugs with atypical characteristics and to explore mechanisms of atypical antipsychotic action.

Footnotes

  • Send reprint requests to: Gary E. Duncan, Ph.D., Department of Psychiatry, CB # 7090, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090. E-mail: gduncan{at}css.unc.edu

  • ↵1 This work was supported in part by Public Health Service research and center Grants MH-33127, MH-00537, HD-03110; Lilly Research Laboratories; and the Foundation of Hope.

  • Abbreviations:
    EPS
    extrapyramidal side effects
    2-DG
    [14C]2-deoxygluclose
    PPI
    prepulse inhibition
    NMDA
    N-methyl-d-aspartate
    PCP
    phencylidine
    • Received August 17, 1999.
    • Accepted December 16, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 293 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 293, Issue 1
1 Apr 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of the Effects of Clozapine, Risperidone, and Olanzapine on Ketamine-Induced Alterations in Regional Brain Metabolism
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Comparison of the Effects of Clozapine, Risperidone, and Olanzapine on Ketamine-Induced Alterations in Regional Brain Metabolism

Gary E. Duncan, Seiya Miyamoto, Jeremy N. Leipzig and Jeffrey A. Lieberman
Journal of Pharmacology and Experimental Therapeutics April 1, 2000, 293 (1) 8-14;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Comparison of the Effects of Clozapine, Risperidone, and Olanzapine on Ketamine-Induced Alterations in Regional Brain Metabolism

Gary E. Duncan, Seiya Miyamoto, Jeremy N. Leipzig and Jeffrey A. Lieberman
Journal of Pharmacology and Experimental Therapeutics April 1, 2000, 293 (1) 8-14;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Macrophages Mediate Neuropathic Pain in Type 2 Diabetes
  • Effect of Acetyl-l-Carnitine on Functional Recovery
  • Mechanism-Based Pharmacokinetic-Pharmacodynamic Model Describing Dextroamphetamine Exposure and Striatal Dopamine Response in Rats and Non-Human Primates following a Single Intravenous Dose of Dextroamphetamine
Show more Neuropharmacology

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics