Abstract
Mibefradil is a new cardiovascular drug with peculiar Ca++antagonistic properties. The most remarkable feature of mibefradil is its unique relative selectivity for T type calcium channels, a property that has been proposed to explain in part the beneficial pharmacological and clinical profiles of this drug. In adrenal glomerulosa cells, aldosterone biosynthesis and secretion in response to angiotensin II or extracellular potassium is dependent on a sustained influx of Ca++ through T type Ca++channels. The effect of mibefradil on the steroidogenic function of glomerulosa cells was therefore investigated. Using the patch clamp technique, we found that mibefradil inhibits selectively and in a concentration-dependent manner (IC50 = 3 μM) Ba++ T type currents in bovine glomerulosa cells. In addition to this tonic (voltage independent) inhibition, the drug also induced a shift of the steady-state inactivation curve of these channels toward hyperpolarized voltages, contributing to its efficacy to prevent Ca++ influx into the cell through T type channels. Concomitantly, mibefradil reduced the cytosolic calcium responses to potassium and angiotensin II (as assessed with fluorescent probes), without affecting the capacitative Ca++ influx, and inhibited pregnenolone and aldosterone formation. This inhibition of steroidogenesis was not exclusively due to mibefradil action on voltage-operated Ca++ channels, because this agent also partially reduced steroid synthesis induced by adrenocorticotropic hormone or forskolin, two activators of the cyclic AMP pathway. In conclusion, mibefradil is highly effective in adrenal glomerulosa cells in reducing T type channel activity and aldosterone biosynthesis, two actions that should contribute to the beneficial effect of the drug in the treatment of hypertension.
Footnotes
-
Send reprint requests to: Dr. Michel F. Rossier, Division of Endocrinology and Diabetology, University Hospital, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
-
↵1 This work was supported by Grants 32-49297.96 and 31-42178.94 of the Swiss National Science Foundation and by the Helmut Horten Foundation. M.F.R. is a recipient of a grant from the Prof. Max Cloëtta Foundation.
- Abbreviations:
- AngII
- angiotensin II
- ACTH
- adrenocorticotropic hormone
- [Ca++]c
- cytosolic free calcium concentration
- Nic
- nicardipine
- Received January 30, 1998.
- Accepted June 23, 1998.
- The American Society for Pharmacology and Experimental Therapeutics
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.