Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan.

H A Pretus, H E Ensley, R B McNamee, E L Jones, I W Browder and D L Williams
Journal of Pharmacology and Experimental Therapeutics April 1991, 257 (1) 500-510;
H A Pretus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H E Ensley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R B McNamee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E L Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I W Browder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Herein we describe the isolation, physicochemical characterization and preclinical evaluation of a water-soluble biologic response modifier extracted from Sclerotium glucanicum. Alkaline extraction of insoluble S. glucanicum exopolymers produced a soluble scleroglucan composed of a triple-helical beta-1,3-linked glucopyranose backbone with single beta-1,6-linked glucopyranosyl branches every third subunit. Scleroglucan has a weight average molecular mass of 1.56 x 10(6) Da, a weight average root mean square distance from the center of gravity of the molecule to its farthest elements of 51.8 nm, a polydispersity (weight-average molecular mass/number average molecular mass) of 1.83 and intrinsic viscosity of 3.081 dl/g. Scleroglucan (250 mg/kg, intravenously) stimulated in vivo murine macrophage phagocytic activity (66%, P less than .001) and increased in vitro macrophage tumor cytotoxicity against syngeneic tumor targets by 124% (P less than .05). Scleroglucan enhanced (P less than .001) murine bone marrow proliferation in a biphasic manner by up to 328%. Scleroglucan therapy increased survival of mice challenged with syngeneic lymphoma, melanoma or adenocarcinoma. AKR/J mice bearing syngeneic lymphoma (1 x 10(3) cells, intraperitoneally) demonstrated increased (P less than .001) long-term survival (100% vs. 0%, greater than 64 days). C57Bl/6J mice bearing syngeneic melanoma B16 (5 x 10(5) cells, subcutaneously) demonstrated increased long-term survival (64% vs. 0%, P less than .05). C57Bl/6J mice bearing syngeneic adenocarcinoma BW10232 (1 x 10(5) cells, subcutaneously) demonstrated increased (P less than .05) median survival time. In addition, scleroglucan prophylaxis increased resistance of mice to challenge with Staphylococcus aureus, Candida albicans and mouse hepatitis virus A-59. Scleroglucan did not induce toxicity or hepatomegaly. We conclude that: 1) a branched, water-soluble beta-1,3-linked scleroglucan biologic response modifier can be extracted from S. glucanicum; 2) scleroglucan will stimulate immunity, modify experimental neoplastic disease and increase resistance to microbial challenge; and 3) scleroglucan shows promise as an immunopotentiating drug.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 257, Issue 1
1 Apr 1991
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
Citation Tools
Abstract

Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan.

H A Pretus, H E Ensley, R B McNamee, E L Jones, I W Browder and D L Williams
Journal of Pharmacology and Experimental Therapeutics April 1, 1991, 257 (1) 500-510;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan.

H A Pretus, H E Ensley, R B McNamee, E L Jones, I W Browder and D L Williams
Journal of Pharmacology and Experimental Therapeutics April 1, 1991, 257 (1) 500-510;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics