Per. U. 2**3**. 1923

CONTENTS

NUMBER 1, AUGUST, 1923

I. The Influence of the Vagus on the Heart Rate. By J. Hamilton Crawford.	1
11. The Effect of Light on the Behavior of Rats after Injections of Quinin and	
Quinidin Sulphates. By David 1. Macht and Elmer J. Teagraden, Jr	21
III. A. Pharmacodynamic Analysis of the Cerebral Effects of Atropin,	
	35
Homatropin, Scopolamin and Related Drugs. By David I. Macht	90
IV. A Pharmacological Comparison of Six Alcohols, Singly and in Admixture,	
on Paramecium. By Charles E. Bills	49
Number 2, September, 1923	
V. The Standardization of Ergot Preparations. By W. A. Broom and A. J.	
Clark	59
VI. The Erythropoietic Action of Red Bone Marrow and Splenic Extracts.	
By Chauncey D. Leake and Elizabeth W. Leake	75
VII. The Histologic Detection of Iodids. By Edward J. Stieglitz	89
• •	00
VIII. Drugs and Basal Metabolism. By Walter M. Boothby and Leonard	~~
G. Rowntree	99
IX. Leukocytic Reactions to Red Bone Marrow and Spleen Extracts. By	
Chauncey D. Leake	109
X. The Behavior of Rats after Injections of Bile Salts, Urea, Creatin and	
Creatinin. By David I. Macht	117
XI. Absorption of Drugs through the Eye, Ear, Teeth and Esophagus. By	
David I. Macht.	
	120

NUMBER 3, OCTOBER, 1923

XII. Studies on Vomiting.	By Robert A. Hatcher and Soma Weiss	139
XIII. The Permeability of	Capillaries as Influenced by Various Drugs. By	
Frank P. Underhill and	Joseph Epstein	195

NUMBER 4, NOVEMBER, 1923

XIV. The pharmacology and Toxicology of Carbon Tetrachloride. By
Paul D. Lamson, George H. Gardner, R. K. Gustafson, E. D. Maire, A.
J. McLean and H. S. Wells
XV. Further Investigations on the Oxytocic-pressor-diuretic Principle of the
Infundibular Portion of the Pituitary Gland. Paper 1. By John J.

Insipidus. Paper 2. By John J. Abel and E. M. K. Geiling. :........ 317 iii

CONTENTS

•

الا ح

Number 5, December, 1923

XVII. A Contribution to the Physiology and Pharmacology of the Trigonum
vesicae. By Hugh H. Young and David I. Macht 329
XVIII. Comparative Study of the Blood Sugar Concentration in the Liver
Vein, the Leg Artery and the Leg Vein During Insulin Action. By
Carl F. Cori, Gerty T. Cori and Hilda L. Goltz
XIX. The Comparative Toxicity of Novocain, Neocain, Procain and Apothe-
sine. The effect of Intravascular Injections. By William R. Meeker
and Emmett B. Frazer
XX. The Effect of Iodides on Nitrogen Metabolism. By G. P. Grabfield, B.
J. Alpers and A. M. Prentiss 393
XXI. The Hematopoietic Effects of Desiccated Red Bone Marrow and Spleen
in Normal Humans. By Chauncey D. Leake
XXII. A Phytopharmacological Study of Menstrual Toxin. By David I.
Macht and Dorothy S. Lubin 413
XXIII. The Experimental Therapy of Amoebic Dysentery. By Andrew
Watson Sellards 467
XXIV. Relation Between the Chemical Structure of Bile Acids and Their
Phytopharmacological and Zoopharmacological Reactions. By David I.
Macht and Olan R. Hyndman 483

•

iv

Actual increase and per cent increase in rate after atropine at various age periods (Fig. 1)	4
Original rate and maximum height attained after atropine at various age periods (Fig. 2)	5
Comparison of actual increase in rate after atropine in chronic heart disease	J
with that of normals of the same age (Fig. 3) Comparison of effect of vagal release in chronic heart disease and normal of	7
same age period (Fig. 4)	8
Comparison of actual increase in rate after atropine in goitre with normal per- sons of same age (Fig. 5)	9
Effect of vagal release in goitre compared to normal (Fig. 6)	10
Comparison of actual increase in rate after atropine during convalescence	10
from rheumatic fever, chorea, pneumonia and during typhoid fever with	
that of normal persons of same age (Fig. 7)	10
Effect of vagal release during convalescence from pneumonia, rheumatic fever	
and chorea compared to normal (Fig. 8)	11
Comparison of average increase in heart rate with varying dosage of atropine	
(Fig. 9)	15
Circular maze (Fig. 1)	36
Cerebral effects of belladonna alkaloids (Fig. 2)	46 ·
Apparatus for counting Paramecia (Fig. 1)	51
The action of adrenalin on the isolated pregnant uterus of the rabbit (Fig. 1).	64
The action of adrenalin before and after ergot on the isolated non-pregnant	
rabbit's uterus (Fig. 2)	65
The standardization of liquid extract of ergot (Fig. 3)	67
The action of liquid extract of ergot upon the isolated uterus of the guinea-pig	
(Fig. 4)	70
The influence of extract of ergot upon the adrenalin response of the blood	
pressure in a decerebrate cat (Fig. 5)	70
The action of adrenalin and ergot on the uterus and blood pressure of a pithed	
cat (2 kilos) (Fig. 6)	71
Uterus and blood pressure of cat (figure 6 continued) (Fig. 7)	72
The uterine movements in a decerebrate cat (Fig. 8)	72
Curves showing the effects of three daily intravenous injections of 1 cc. per	
kilogram of a 5 per cent filtered saline solution of fresh red bone marrow	
and spleen, singly and in combination, on the number of circulating	
erythrocytes in rabbits (Fig. 1)	80
Typical curves illustrating the calorigenic action of adrenalin and thyroxin	
and the specific dynamic action of protein and glucose (Fig. 1)	105
Circular maze (Fig. 1)	
Dog, 11.2 kilos. Paraldehyde anesthesia (Fig. 1)	120

.

v

Dog, 5.7 kilos. Paraldehyde anesthesia (Fig. 2)	127
Dog. Paraldehyde anesthesia (Fig. 3)	128
Cat. Ether anesthesia (Fig. 4)	129
Dog. Paraldehyde anesthesia (Fig. 5)	130
Dog. Paraldehyde anesthesia (Fig. 6)	131
Dog. Paraldehyde (Fig. 7)	132
Dog. Paraldehyde anesthesia (Fig. 8)	133
Dog. Ether anesthesia (Fig. 9)	135
Dog. Paraldehyde anesthesia (Fig. 10)	136
Diagram showing the areas destroyed in the floor of the fourth ventricle pre-	
vious to the administration of various emetics (Fig. 1)	152
Two experiments showing the effect of saline injected intravenously upon the	
blood concentration of dogs (Chart 1)	198
Two experiments showing the effect of saline injected intravenously upon the	
blood concentration of dogs under ether anesthesia (Chart 2)	199
Two experiments showing the effect of saline injected intravenously upon dogs	
under alcohol narcosis (Chart 3)	201
A superimposition of one curve each from Charts 1, 2 and 3, showing the	
similarity in the behavior of the blood concentration under the three	
above conditions (Chart 4)	201
Two experiments showing the behavior of the blood concentration when	
peptone is injected intravenously, and then followed by saline (Chart 5).	203
An experiment showing the behavior of the blood concentration after the	
injection of choline hydrochloride (Chart 6)	205
Two experiments showing the behavior of the blood concentration when	
choline is injected intravenously, and then followed by saline (Chart 7).	206
An experiment showing the behavior of the blood concentration after injec-	
tion of atropin sulphate (Chart 8)	207
Two experiments showing the behavior of the blood concentration when	
atropin sulphate is injected, and then followed by saline (Chart 9)	208
An experiment showing the effect upon the blood concentration by the in-	
jection of pilocarpin hydrochloride (Chart 10)	210
Two experiments showing the behavior of the blood concentration when pilo-	
carpin hydrochloride is injected, and then followed by saline (Chart 11)	210
Indices of total intoxication after the administration of carbon tetrachloride	
(Fig. 1a)	223
Indices of maximum intensities of intoxication after administration of car-	
bon tetrachloride (Fig. 1b)	223
Illustrative curves of dye concentrations obtained by Rosenthal's modifica-	
tion of Abel and Rowntree's phenoltetrachlorphthalein liver function	
test (Fig. 2)	227
Graphic representation of the intensity, course, and duration of intoxication	
(Fig. 3)	227
Apparatus used for inhalation experiments (Fig. 4)	230
Phenoltetrachlorphthalein toxicity indices for the oral administration of 4	
mils/kilo of carbon tetrachloride in dogs (Fig. 5)	237
Phenoltetrachlorphthalein toxicity indices for the oral administration of	
6 mils/kilo of carbon tetrachloride in dogs (Fig. 6)	238
,	

•

. •

.

Phenoltetrachlorphthalein toxicity indices for the oral administration of 10	~~~
mils/kilo of carbon tetrachloride to dogs (Fig. 7)	
Inhalation of carbon tetrachloride vapor (Fig. 8)	251
Phenoltetrachlorphthalein toxicity indices for the inhalation administration	
	253
Phenoltetrachlorphthalein toxicity indices for the inhalation administration	
	253
Intracaval injections of physiological saline saturated with carbon tetra-	
	255
Phenoltetrachlorphthalein toxicity indices for the intracaval injection of an	
0.8 lethal dose of carbon tetrachloride (Fig. 12)	257
Injections of carbon tetrachloride into a branch of the vena cava (Fig. 13)	
Injections of carbon tetrachloride into a branch of the vena cava (Fig. 14)	259
Injection of carbon tetrachloride into the peripheral end of the cut femoral	
artery (Fig. 15)	260
	261
Pulmonary and carotid pressures after intracaval injections of carbon	201
	262
Effect of carbon tetrachloride on the bronchi (Fig. 18)	
Intraportal injection of carbon tetrachloride (Fig. 19)	
Intraportal injection of carbon tetrachloride (Fig. 20)	204
Intracarotid injection (Fig. 21).	264
Intracarotid injection (Fig. 22)	
	267
Phenoltetrachlorphthalein toxicity indices for the rectal administration of	
	267
Phenoltetrachlorphthalein toxicity indices for the oral administration of 4	
mils/kilo of 97 per cent alcohol (Fig. 25)	269
Phenoltetrachlorphthalein toxicity indices for the oral administration of 1	
mil/kilo of 97 per cent alcohol mixed with 4 mils/kilo of carbon tetra-	
chloride (Fig. 26)	270
Phenoltetrachlorphthalein toxicity indices for the oral administration of	
4 mils/kilo of 97 per cent alcohol mixed with 4 mils/kilo of carbon tetra-	
chloride (Fig. 27)	271
Phenoltetrachlorphthalein toxicity indices for the oral administration of	
4 mils/kilo of 97 per cent alcohol mixed with 10 mils/kilo of carbon	
tetrachloride (Fig. 28)	272
Phenoltetrachlorphthalein toxicity indices for the oral administration	
of 4 mils/kilo of carbon tetrachloride one hour subsequent to administra-	
tion of 20 mils/kilo of cream (Fig. 29)	274
Phenoltetrachlorphthalein toxicity indices for the oral administration of 4	
mils/kilo of olive oil mixed with 4 mils/kilo of carbon tetrachloride	
(Fig. 30).	276
Phenoltetrachlorphthalein toxicity indices for the oral administration of	2.0
carbon tetrachloride (4 mils/kilo) to dogs kept for twenty-four hours	
before and after dosing in an ice box at a temperature of approximately	
12°C. (Fig. 31)	977
Phenoltetrachlorphthalein toxicity indices for the oral administration of	
4 mils/kilo of carbon tetrachloride in puppies (Fig. 32)	970
A must kno of carbon tenachoride in pupples (Fig. 32)	213

. • •

Crystalline product 50 to 62.5 times stronger than histamine acid phosphate	000
(Fig. 1)	299
Pituitary tartrate 1000 times stronger than histamine acid phosphate (Fig. 3). 3 Pituitary tartrate 1250 times stronger than histamine acid phosphate (Fig. 4). 3	
Cat, female, weight 2.8 kgm., ether anesthesia; carotid blood pressure (Fig. 5). 3	503
Shows action on the arterial blood pressure of small doses of the pituitary	
tartrate with an oxytocic value of $350 \times \beta$ -I phosphate, at a time when	
n-butyl alcohol no longer effects a separation into fractions of a different	204
value (Fig. 6)	
Cat, male, weight 3.6 kgm.; ether (Fig. 7)	504
Diagram illustrating the diuretic effect of the pressor-oxytocic tartrate on a	000
rabbit weighing 2.5 kgm. (Fig. 8)	506
Diagram illustrating the diuretic effect of the pressor-oxytocic tartrate on a	
rabbit weighing 2.5 kgm. (Fig. 9) 3	307
Diagram illustrating the destruction of the diuretic action of the pituitary	
tartrate by subjecting it to normal NaOH for one hour at room tem-	
perature (Fig. 10)	
Sagittal section of bladder (Fig. 1) 3	
Sagittal section through urethra and bladder of adult (Fig. 2) 3	335
Normal trigon; trigonal muscle raised exposing the circular muscle layer;	
left ureter dissected free from the bladder wall and trigonal muscle pulled	
up as a sheet (Fig. 3) 3	336
Endoscopic views of the vesical orifice and posterior urethra of six normal	
cases (Fig. 4)	
Trigonum vesciae (Figs. 5 and 6) 3	
Trigonum vesicae (Figs. 7, 8 and 9) 3	
Trigonum vesicae (Figs. 10 and 11)	
Trigonum vesicae (Fig. 12)	
Trigonum vesicae (Figs. 12 and 13)	
Trigonum vesicae (Figs. 15 and 16)	
Trigonum vesicae (Figs. 17 and 18) 3	
Trigonum vesicae (Figs. 19 and 20) 3	
Trigonum vesicae (Figs. 21, 22 and 23)	
Lupinus albus seedlings in normal and test solutions (Fig. 1) 4	117
A series of experiments on lupinus seedlings performed at the same time	
(Fig. 2)	118
Growth of lupinus seedlings in normal solution and changes produced by	
menstrual serum (Fig. 3) 4	
Effect of menstrual sweat on flowers (Fig. 4)	
Effect of menstrual toxin on sweet peas (Fig. 5) 4	
Effect of menotoxin on cinerea (Fig. 6) 4	
Effect of menotoxin on the geotropic properties of Lupinus albus (Fig. 7) 4	
Effect of menotoxin on fermentative activity of yeast (Fig. 8) 4	
Effect of normal and menstrual sera on protoplasm of Nitella (Fig. 9) 4	44
Von Ott's menstrual curve to show the variations of certain physiological	
functions in women in relation to menstruation (Fig. 10)	60

.