Per. V. 21 1923

646

Downloaded from jpet.aspetjournals.org at ASPET Journals on April 19, 2024

CONTENTS

Number 1, February, 1923

 III. The Nicotine Content of Tobacco Smoke. By J. Percy Baumberger. IV. The Amount of Smoke Produced from Tobacco and Its Absorption in Smoking as Determined by Electrical Precipitation. By J. Percy Baumberger. V. Chronic Intoxication by Small Quantities of Cadmium Chloride in the Diet. By Carl O. Johns, A. J. Finks and Carl I. Alsberg. 	1 23 35 47 59 65
Number 2, March, 1923	
 VIII. On the Biological Significance of Lipoids. The Action of Kephalin and Lecithin. By W. Storm van Leeuwen and A. v. Szent Györgyi. IX. On the sensitivity of Different Nerve Endings to Atropine. By V. E. Henderson. X. On the Active Principles of the Pituitary Gland. By Harold Ward Dudley. 1 X1. Comparative Toxicity of Inorganic Lead Compounds and Metallic Lead for Pigeons. By P. J. Hanzlik and Elizabeth Presho. 1 XII. Therapeutic Efficiency of Various Agents for Chronic Poisoning by Metallic Lead in Pigeons. By P. J. Hanzlik and Elizabeth Presho. 1 XIII. Comparative Toxicity of Metallic Lead and Other Heavy Metals for 	77 85 99 103 123 131 .45
Number 3, April, 1923	
 XV. On the Detection of Benzene in Cadavers. By Alexander O. Gettler XVI. A Study of the Rate of Deposition and Paths of Absorption of Strontium in the Rat. By Ethel May Kinney and E. V. McCollum XVII. The Action of Camphor, Menthol and Thymol on the Circulation. By Reginald St. A. Heathcote	165 177

Number 4, May, 1923

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
XIX. The Intra-hepatic Administration of Drugs. By J. A. Waddell XX. Does the Reaction to Adrenalin Obey Weber's Law? By D. Murray Lyon	
XXI. The Toxicity of Carbon Tetrachloride: In Relation to Liver Function as Tested by Phenoltetrachlorphthalein. By Paul D. Lamson and A. J.	
XXII. The Salicylates. XIV. Liberation of Salicyl from and Excretion of Acetylsalicylic Acid. By P. J. Hanzlik and Elizabeth Presho	
Number 5, June, 1923	
XXIII. On the Entrance of Convulsant Dyes into the Substance of the Brain and Spinal Cord after an Injury to these Structures. By H. C. Syz	263
XXIV. The Effect of Quinine Intoxication on the Respiratory Center of the Rabbit. By H. Sugata and A. L. Tatum	293
Organic Arsenic Compounds after Intravenous Administration. By F. M. R. Bulmer	301
Bismuth. By Baldwin Lucke and Joseph V. Klauder	
Elizabeth Nicholls and Wm. S. McCann	
Number 6, July, 1923	
XXX. The Free Sugar Content of the Liver and Its Relation to Glycogen- synthesis and Glycogenolysis. By Carl F. Cori, G. T. Cori and G. W.	
Pucher XXXI. Notes on the Pharmacology and Therapeutics of Oil of Chenopodium and Investigations on the Anthelmintic Value of Its components. By	
Daniel M. Molloy XXXII. The Influence of the Arterial Blood Supply to the Liver on Hemoglobin Concentration in Certain Acute Conditions. By Paul D. Lamson,	
A. F. Abt, C. A. Oosthuisen and S. M. Rosenthal	
XXXIV. A Pharmacological and Clinical Examination of Benzyl Mandelate. By David I. Macht	

ILLUSTRATIONS

Apparatus for the absorption of CO in tobacco smoke (Fig. 1)	25
Nicotine absorption apparatus (Fig. 1)	37
Diagram of smoke precipitation (Fig. 1)	49
Diagram of the electrical connections of the smoke precipitator (Fig. 2)	50
Photograph of smoke precipitator with cigarette in poisition for deter-	
mining total smoke (Fig. 3)	51
View of precipitator showing electrical connections (Fig. 4)	51
Intoxication by cadmium chloride (Chart 1)	61
Intoxication by cadmium chloride (Chart 2)	62
Intoxication by cadmium chloride (Chart 3)	63
Action of drugs on faradic stimulation (Fig. 1)	80
Action of drugs on faradic stimulation (Fig. 2)	81
Action of drugs on faradic stimulation (Fig. 3)	82
Action of drugs on faradic stimulation (Fig. 4)	83
Influence of lecithin and kephalin on blood pressure (Fig. 1)	88
Influence of lecithin and kephalin on the hypodynamic frog heart (Fig. 2)	89
Activity of the picrate on uterine muscle after recrystallization from 50 per	
cent alcohol (Fig. 1)	112
Comparison of fraction A with histamine (oxytocic activity) (Fig. 2)	114
Comparison of uterine activities of A and R (Fig. 3)	114
Effect of A and R on the blood pressure (Fig. 4)	116
Effect of A and R on the blood pressure (Fig. 5)	116
Extraction of A by butyl alcohol; distribution of oxytoxic principle	
(Fig. 6)	117
Extraction of A by butyl alcohol; distribution of pressor principle	
(Fig. 7)	117
The comparative solubility of lead in low concentrations of various salts in	
0.2 per cent hydrochloric acid (A), and in 0.2 per cent hydrochloric acid	
and food (B), in vitro at 38°C. (Fig. 1)	141
Failure of paradoxon in the morning, appearance in the afternoon, in the same	
frog heart (Fig. 1)	155
Contractions of the uterus of a white mouse (Fig. 2)	157
Frog heart perfused with thymol, 1/200,000 (Fig. 2)	182
Frog heart perfused with menthol, 1/20,000 (Fig. 1)	182
Fracing showing the action of chloral, 1/2,000, both with and without cam-	
phor, 1/10,000 (Fig. 3)	183
Rabbit heart perfused with camphor, 1/5,000 (Fig. 4)	184
Rabbit heart perfused with thymol, 1/25,000 (Fig. 5)	184
Fracing showing the action of camphor injected subcutaneously in a decere-	
brate cat (Fig. 6)	187

Tracing showing the result of injecting camphor in solution in olive oil	
intravenously in the decerebrate cat (Fig. 7),	188
Intra-hepatic administration of drugs (Fig. 1)	
Intra-hepatic administration of drugs (Fig. 2)	227
Reaction to adrenalin (Fig. 1)	232
Blood pressure tracing (Fig. 2)	233
Showing retention of dye in three dogs given a single dose of carbon tetra-	
chloride (4 cc./kilo) (Fig. 1)	241
Showing no retention of dye in three dogs given a single dose of carbon tetra-	
chloride (2 cc./kilo) (Fig. 2)	243
Showing no retention of dye in three dogs given. 4 cc./kilo of carbon tetra-	
chloride, divided into two 2 cc./kilo doses administered forty-eight hours	
apart (Fig. 3)	244
Liberation of salicyl from, or decomposition of, acetylsalicylic acid (0.1 per	
cent) in phosphate and citric-phosphate "buffer" solutions at 38°C. at the	
end of one hour, eighteen and twenty-four hours (Fig. 1)	249
Shows the striking difference in the absorption of convulsant dyes into the	
intact and into the injured nervous system (Fig. 1)	291
Shows the rate of excretion of arsenic in urine of dogs A and B (Graph 1).	305
Shows the excretion of arsenic in the feces of dogs A and B (Graph 2)	306
Shows the effect of successive doses of arsenic on the excretion (Graph 3)	307
Shows the difference in the amount of arsenic in the feces of a dog with	
biliary fistula and a normal dog (Graph 4)	308
Analyses of the urine, and the bile and urine of the dogs represented in graph	
4 (Graph 5)	309
	316
Kidney: Necrosis of many convoluted tubules, and encrustation with	
	318
Kidney: Necrosis and calcification of many convoluted tubules (Fig. 3).	319
Kidney: Marked necrosis and calcification of convoluted tubules (Fig. 4)	319
Massed temperature responses of 14 adult pigeons to doses of barbital vary-	
	328
Daily body temperatures and body weights of pigeons in barbital narcosis	
compared with those of control pigeons (Chart 2)	
	346
0.5 cc. epinephrin on a diabetic patient, showing decrease of blood sugar	
	349
Epinephrin and insulin in a severe diabetic subject, complicated with pul-	
monary tuberculosis (Chart 3)	352
Epinephrin and insulin in a diabetic patient (Chart 4)	354
Comparison of the effect of 10 units of insulin on blood sugar in a diabetic	
patient three days after admission and after a period of clinical improve-	
ment (Chart 5)	355
	055
to epinephrin (Chart 6)	357
insensitive to eninephrin (Chart 7)	250

Graphical picture of the increased percentage of total calories produced in	
2 normal subjects by epinephrin and insulin, given alone and in com-	
	359
	360
	361
• •	362
	363
Disappearance of hemoglobin from the blood stream in normal rabbits	
	371
Rate of departure of hemoglobin from the blood stream in rabbits before and	
	372
Departure of hemoglobin from the blood stream before and after ligation of	
	373
Phenoltetrachlorphthalein liver function test in normal rabbits and in those	
	374
	379
A composite curve taken from figure 1, Lamson and Roca, showing the hemo-	
globin concentration curve after the injection of 25 cc. of 0.8 per cent	
	403
From Lamson and Roca, showing the effect of the addition of 0.9 mgm. of	
-FF	404
Curves showing the effect of the addition of 0.9 mgm. of epinephrine per	
kilo to the salt solution injected (20 per cent less than the standard	
amount to allow for the blood removed in shutting off the liver	
(Fig. 4)	404
Curves 1, 2, 3 and 4 show the effect of the addition of 3.0, 0.1, 0.01, and 0.03	
mgm. of histamine phosphate per kilo, respectively, to the salt solution	
injected (Fig. 5)	406
Two curves showing the effect of 1.8 mgm. per kilo of histamine phosphate	
after removal of the liver (Fig. 6)	407
Curves showing the effect of the addition of 0.7 cc. of a 1 per cent solution of	
barium chloride per kilo to the salt solution injected (Fig. 7)	407
Curves showing the effect of 0.15 cc. per kilo of Armour's pituitary liquid to	
two dogs in the customary amount of salt solution (Fig. 8)	407
Curves obtained after the injection of 2 cc. per kilo of Armour's pituitary	
liquid with the usual amount of salt solution (Fig. 9)	408
Curves taken after injection of epinephrine (0.9 mgm. per kilo) and Armour's	
pituitary liquid (2 cc. per kilo) with the usual amount of salt solution	
	408
Curves showing the effect of histamine phosphate, 1.8 mgm. per kilo, and	
Armour's pituitary liquid, 2 cc. per kilo, in the hemoglobin concentra-	
tion curve when injected in the standard amount of salt solution	
	409
Four curves of hemoglobin concentration after the injection of 2 cc. of	
· · · · · · · · · · · · · · · · · · ·	40 9
Curves 1, 2, and 3 are plotted from plasma protein concentrations after the	
injection of 2 cc. per kilo of Armour's pituitary liquid in 25 cc. of salt	
solution per kilo. Curves 4 and 5 show the changes in concentration of	
· · · · · · · · · · · · · · · · · · ·	

another substance, vital red injected twenty-four hours previously after the injection of pituitrin. Curve 6 is the plasma protein curve after the injection of saline alone. Curve 9 is the epinephrine and saline curve	
and curves 7 and 8 are histamine and saline curves (Fig. 13)	410
volume determinations done by the Keith, Rowntree and Geraghty	
method, and volume change as indicated by plotting hemoglobin concentration (Fig. 14)	411
In this experiment 5 grams glucose per kilo were intravenously injected in a	
concentrated solution, and the volume curves plotted as before by the	
dye and hemoglobin methods (Fig. 15)	411
in blood volume (Fig. 16)	411
These curves were obtained by the dye and hemoglobin methods after the	411
addition of large amounts of Armour's pituitrin to the salt solution	
injected (Fig. 17)	411
Portal and cava pressures after the injection of 2 cc. per kilo of Armour's	
pituitary liquid in 25 cc. of 0.8 per cent NaCl solution per kilo	
(Figs. 18 and 19)	414
Portal and cava pressures with 5 drops spirits of nitroglycerin per kilo and	
10 mgm. per kilo of sodium nitrite in 25 cc. of salt solution per kilo (Figs.	
20 and 21)	414
Curves showing the effect on venous pressure of 1.8 mgm. of histamine phos-	
phate in 25 cc. of 0.8 per cent NaCl per kilo (Figs. 22 and 23)	415
Venous pressures with 0.7, 1.0, 0.8 and 0.35 cc. of 2 per cent NBAaCl ₂ per kilo in curves 23, 27, 29 and 31 respectively in 25 cc. of 0.8 per cent NaCl per	
kilo (Figs. 24 and 25)	415
Venous pressures with 0.9 mgm. of epinephrin per kilo and 2 cc. of Armour's	110
pituitary liquid per kilo in 25 cc. of 0.8 per cent NaCl per kilo (Figs.	
26 and 27)	416
Venous pressure curve with a mixture of 1.8 mgm. of histamine phosphate	
and 2 cc. of Armour's pituitary liquid in 25 cc. of 0.8 per cent NaCl	
per kilo (Figs. 28 and 29)	416
Curves showing the effect of shutting off the arterial blood supply to the liver,	
on the hemoglobin concentration curves after the injection of 25 cc. per	
kilo of 0.8 per cent NaCl with the addition of epinephrin 0.9 mgm. per	
kilo, curves 126, 129 and 137 histamine 1.8 mgm. per kilo, curves 131, 135,	400
and saline alone in curves 139 and 141 (Fig. 30)	422
of epinephrine per kilo after ligation of the hepatic artery (Fig. 31)	193
Effect of the injection of adrenalin on the temperature of the brain and of the	420
liver of animals which had received a previous dose of strychnine	
(Fig. 1)	431
Effect of the injection of strychnin upon the temperature of the brain and	
of the liver (Fig. 2)	
Effect of the injection of adrenalin in a morphinized animal (Fig. 3)	437
Effect of the injection of adrenalin upon the temperature of the brain and of	
the liver in an animal which had received preceding doses of atropin	
(Fig. 4)	438

The effect of alcohol upon the temperature of the brain and of the liver, and	
of the injection of adrenalin in animals which had received preceding	
doses of alcohol (Fig. 5)	440
The comparative effects of the injection of adrenalin upon the temperature	
of arterial (carotid) and venous (jugular) blood (Fig. 6)	441
Uterus of a guinea-pig, stimulation with pituitary liquid and relaxation with	
benzyl mandelate (Fig. 1)	445
Small intestine of rabbit, stimulation with pilocarpin hydrochloride, relaxa-	
tion with benzyl mandelate (Fig. 2)	446
Small intestine of rat, stimulation with pilo-carpin hydrochloride, relaxation	47
with benzyl mandelate (Fig. 3)	
Muscle strip from human uterus, contracted by ergotoxin and relaxed by	
benzyl benzoate (Fig. 4)	448
Muscle strip from human gall bladder, stimulation by morphine, marked	
contraction, relaxation by benzyl mandelate (Fig. 5)	449
Blood pressure curve in the rabbit under paraldehyde anesthesia, showing	
the effect of benzyl mandelate injected intravenously (Fig. 6)	450
Rabbit under paraldehyde anesthesia. Effect on respiration and blood pres-	
sure of benzyl mandelate introduced into the stomach (Fig. 7)	451