CONTENTS

Number 1, August, 1921

 I. On the Relative Amounts of Depressor and Broncho-Constrictor Substance Obtainable from the Anterior and Posterior Lobes of the Fresh Pituitary Gland. By John Roco. II. On the Pituitary Active Principles and Histamine. By H. H. Dale and H. W. Dudley. III. Studies of Chronic Intoxications on Albino Rats. V. Arsenic Trioxid. By Torald Sollmann. IV. On the Chemical Composition and Physiological Characteristics of Brain Cephalin. By Frederic Feuger. V. The Pharmacology of Chelidonin, the Benzylisoquinoline Alkaloid of Chelidonium (Celandine or Tetterwort) and Stylophorum. By P. J. Hanzlik. 	1 27 43 51 63
Number 2, September, 1921	
VI. The Physiological Action of N-Methylhistamine and of Tetrahydropyrido-3.4-Iminazole ("Imidazolisopiperidin" of Fränkel). By H. H. Dale and H. W. Dudley	111 121 133
Number 3, October, 1921	
r 3	

XV. Studies on the Influence of Phenylcinchoninic Acid and the Ethyl Ester of Paramethylphenylcinchoninic Acid on Renal Excretion. By Victor C. Myers and John A. Killian
Number 4, November, 1921
XVII. A Simple Method for the Determination of the Coagulation Time of Blood in Animals. By O. Inchley
Number 5, December, 1921
XXIII. The Effect of Hydrogen Ion Concentration on the Toxicity of Alkloids for Paramoecium. By Marian M. Crane
Number 6, December, 1921
XXVII. The Toxicity of the Blood of Adrenalectomised Frogs. By C. H. Kellaway
Propyl Diphenyl Amino-Carbinol. By M. L. Bonar and Torald Sollmann 467

Dog, male, 6 kgm., ether anesthesia (Fig. 1)	3
— pithed, 13.3 kgm. (Fig. 2)	4
—— pithed, 13.3 kgm. (Fig. 3)	5
—— pithed, 9.2 kgm. (Fig. 4)	6
One entire horn virgin guinea-pig's uterus (Fig. 5)	13
entire horn virgin guinea-pig's uterus (Fig. 6)	14
entire horn virgin guinea-pig's uterus (Fig. 7)	15
—— entire horn virgin guinea-pig's uterus (Fig. 8)	16
entire horn virgin guinea-pig's uterus (Fig. 9)	17
Male dog, 5.8 kgm., paraldehyde anesthesia (Fig. 10)	18
Dog, male, 5.8 kgm., paraldehyde anesthesia (?) (Fig. 11)	19
Effect of injecting into the femoral vein of a pithed dog 4 cc. out of a total	
quantity of 25 cc. aqueous solution of the chloroform extract of fraction I	
(mercuric chloride tar) of posterior lobe (Fig. 12)	20
of injecting into the femoral vein of a pithed dog 8 cc. out of a total	
quantity of 100 cc. aqueous solution of the chloroform extract of fraction	
I (mercuric chloride tar) of anterior lobe (Fig. 13)	21
Shows that the apparatus employed for the preparation of figure 12 in which	
the chloroform extract of the posterior lobe was shown to constrict the	
bronchioles was not set to register small alterations in lung volume	
(Fig. 14)	22
Effect of injection into the femoral vein of a pithed dog 1 cc. solution of	
pressor and oxytocic phosphate "A" = 11 mgm. prepared by decom-	
posing the "proteid-HgCl2-precipitate" of Abel and Nagayama (Fig. 15)	23
Shows the entire absence of broncho-motor action of 5.5 and 11 mgm. of	
choline chloride injected into the femoral vein of a pithed dog (Fig. 16).	24
Blood pressure of cat under ether (Fig. 1)	32
— pressure of cat under ether (Fig. 2)	33
Pituitary active principles and histamine (Fig. 3)	34
active principles and histamine (Fig. 4)	35
Blood pressure of cat under ether (Fig. 5)	36
Pituitary active principles and histamine (Fig. 6)	37
Effect of erepsin on oxytocic principle (Fig. 7)	40
Effects of arsenic on the growth of rats (Fig. 1)	44
Arsenic on food consumption (Fig. 2)	47
Effects of chelidonin on cardiac volume, kidney volume and blood-pressure	
of curarized and atropinized dog (18.5 kgm.) (Fig. 1)	77
—— of chelidonin on perfused turtle's heart (Fig. 2)	7 8
Longitudinal strip of dog's ureter in 150 cc. of Tyrode's solution (Fig 3)	86
Dog's bladder; quiescent strip in 50 cc. Tyrode's solution (Fig. 4)	86

Rabbit's aorta; ring preparation in 150 cc. Tyrode's solution (Fig. 5)	86
Dog 15.2 kgm. Effect of chelidonin and hemorrhage on intestinal peristalsis,	
blood-pressure and respiration (Fig. 6)	88
Effect of chelidonin on untreated bronchi of decerebrated dog (6.5 kgm.)	
(Fig. 7)	93
— of chelidonin on bronchi of decerebrate cat (1.5 kgm.) (Fig. 8)	93
Blood pressure of cat under ether (Fig. 1)	105
Horn of guinea-pig's uterus suspended in 80 cc. Ringer solution (Fig. 2)	105
Blood pressure of cat under ether (Fig. 3)	109
Horn of guinea-pig's uterus suspended in 80 cc. Ringer solution (Fig. 4)	109
Bronchus of pig (Fig. 1)	114
Normal bronchus of pig (Fig. 2)	114
Bronchus of pig (Fig. 3)	115
Diseased bronchus of pig, freshly excised (Fig. 4)	115
Section of pig's lung showing consolidation and inflammatory process	
(Fig. 5),	116
— of normal lung of pig (Fig. 6)	116
Amyl nitrite effect upon portal pressure and liver volume in the dog (Fig. 1).	157
Effect of the injection of 3 cc. of dog's urine upon the portal blood pressure	
and liver volume in the dog (Fig. 2)	160
Experiment H17. Effect of sodium salicylate on normal dog (Fig. 1)	169
H15. Effect of sodium salicylate on coli fever dog (Fig. 2)	169
	170
H33. Effect of antipyrine on coli fever dog (Fig. 4)	170
1	171
	171
•	172 173
	178
	178
,	187
Manner of suspending uterine horn of virgin rabbit (Fig. 1)	
Uterus of non-pregnant multiparous rabbit (Fig. 3)	188
Miltiparous rabbit, horn of the uterus split (Fig. 4)	189
rabbit, whole uterus horn as in figure 1 (Fig. 5)	189
Contractions of longitudinal and circular muscle of pregnant rabbit (Fig. 6)	190
Virgin rabbit uterus suspended as in diagram (Fig. 7)	191
rabbit. Nerves to right horn divided eighty-two days previously	
(Fig. 8)	192
rabbit uterus (Fig. 9)	192
rabbit. Operated fifty-six days previously (Fig. 10)	193
rabbit uterus (Fig. 11)	193
rabbit. Nerves of right horn cut sixty-four days previously (Fig. 12)	194
rabbit. Right horn cut sixty-four days previously (Fig. 13)	194
Multiparous rabbit. Nerves of right horn cut twenty-two days previously	
(Fig. 14)	195
rabbit. Nerves to right horn cut twenty-two days previously (Fig. 15)	
Rat's uterus (Fig. 16)	
Nervous supply of uterus severed by cutting broad ligment (Fig. 17)	198

Effect of epinephrin by rectum on intestinal peristalsis and carotid blood	
pressure (Fig. 1)	
Coagulation time of blood (Fig. 1)	238
— time of blood (Fig. 2)	
Influence of electric current on absorption of drugs, rabbits A and B (Fig. 1)	244
- of electric current on absorption of drugs, blood pressure tracings	
(Fig. 2)	
—— of electric current on absorption of drugs, diagram of apparatus (Fig 3)	246
of electric current on absorption of drugs, rabbit, 2.5 grams of urethane	
(Fig. 4)	247
- of electric current on absorption of drugs, guinea-pig, 300 grams of	
urethane (Fig. 5)	251
Isolated gut suspended in 75 cc. of Tyrode solution. Influence of serum	
on pilocarpine action (Fig. 1)	258
Influence of lecithin on pilocarpine action (Fig. 2)	
— of cholesterine on pilocarpine action (Fig. 3)	
— of cholesterine on pilocarpine action (Fig. 4)	262
of cephalin on pilocarpine action (Fig. 5)	
— of lecithin on histamine action (Fig. 6)	
— of lecithin on histamine action (Fig. 7)	
Isolated cat's intestine suspended in 75 cc. of Tyrode solution (Fig. 1)	
— gut suspended in 75 cc. Tyrode solution (Fig. 2)	
— gut suspended in 75 cc. Tyrode solution (Fig. 3)	
— cat's intestine suspended in 75 cc. Tyrode solution (Fig. 4)	
Influence of adrenaline (Parke, Davis and Company) on blood pressure of a	
fowl suffering from avitaminosis (Fig. 1)	301
of pilocarpine hydrochloride and atropine sulfate on isolated gut of	
normal fowl (Fig. 2a)	303
— of pilocarpine and atropine on isolated gut of fowl suffering from experi-	303
mental polyneuritis (Fig. 2b)	303
Action of 0.05 mgm. of ergamine (Burroughs, Welcome and Company) on	-
isolated gut of normal fowl (Fig. 3a)	304
— of 0.005 mgm. of ergamine on isolated gut of fowl suffering from experi-	
mental polyneuritis (Fig. 3b)	
— of 0.1 mgm. of pilocarpine on isolated esophagus of fowl suffering from	
experimental polyneuritis (Fig. 4)	305
— of adrenaline on blood pressure of cat suffering from experimental	-
polyneuritis (Fig. 5)	308
Fall in blood pressure caused by 0.01 mgm. of ergamine in a cat suffering from	
experimental polyneuritis (Fig. 6)	
Action of 0.01 mgm. of pilocarpine on isolated gut of a cat suffering from	900
polyneuritis (Fig. 7)	310
Pig's bronchus (Fig. 1)	
— bronchus (Fig. 2)	
Bronchus of pig (Fig. 3)	
— of pig (Fig. 4)	
Surviving bronchus of pig (Fig. 5)	
Pilocarpin hydrochloride, 1 mgm., produces marked contraction (Fig. 6)	

10,0,	380
1000	382
—— of pig (Fig. 9) 3	
of pig (Fig. 10)	
— of pig (Fig. 11)	
— of pig (Fig. 12)	
— of pig (Fig. 13)	
— of pig (Fig. 14)	383
— of pig (Fig. 15)	
—— of pig (Fig. 16)	
of pig (Fig. 17) 3	385
—— of pig (Fig. 18)	
—— of pig (Fig. 19) 3	
—— of pig (Fig. 20)	389
— of pig (Fig. 21) 3	
— of pig (Fig. 22) 3	389
— of pig (Fig. 23)	390
—— of pig (Fig. 24)	
Perfused normal frog heart (Fig. 1)	404
Uterine effects of intravenous injections. Dog 7 (Fig. 1)	409
effects of intravenous injections. Dog. 4 (Fig. 2)	411
—— effects of intravenous injections. Dog 18 (Fig. 3)	412
effects of intravenous injections. Dog 18 (Fig. 4)	413
—— effects of intravenous injections. Dog 3 (Fig. 5)	416
— effects of intravenous injections. Dog 1 (Fig. 6)	
effects of intravenous injections. Dog 14 (Fig. 7)	
Fig. 1	
Isolated frog's heart perfused, movements of auricle and ventricle record	
(Fig. 2)	431
The action of thorium upon the frog's heart (Fig. 3)	433
Frog's heart perfused with potassium-free Ringer (Fig. 4)	434
Isolated auricle of rabbit suspended in Ringer (Fig. 5)	437
The action of uranium upon the isolated auricle of the rabbit (Fig. 6)	438
action of potassium, rubidium, caesium and thorium upon the isolated	
rabbit's auricle when this is excited by lack of potassium (Fig. 7)	439
action of potassium, rubidium, caesium and thorium in producing con-	
tractions of the isolated uterus of the rabbit (Fig. 8)	440
action of potassium, rubidium, caesium and thorium in producing con-	•
	441
—— effect of alteration of the potassium content of Ringer upon the vessels	
	442
— action of potassium, rubidium and thorium in inhibiting the hyper-	
acidity of the rabbit's uterus produced by lack of potassium (Fig. 11)	442
— action of uranium and rubidium in inhibiting the hyperacidity pro-	
duced by lack of potassium in the isolated gut and uterus of the rabbit	
(Fig. 12)	442
— action of potassium, rubidium and caesium in inhibiting the hyper-	
acidity produced by lack of potassium in the isolated gut of the rabbit	:
(Fig. 13)	
Relation of histamine to intestinal intoxication (Fig. 1)	
Comparison of affective and toxic doses of anosthetics (Fig. 1)	