CONTENTS #### Number 1, August, 1921 | I. On the Relative Amounts of Depressor and Broncho-Constrictor Substance Obtainable from the Anterior and Posterior Lobes of the Fresh Pituitary Gland. By John Roco. II. On the Pituitary Active Principles and Histamine. By H. H. Dale and H. W. Dudley. III. Studies of Chronic Intoxications on Albino Rats. V. Arsenic Trioxid. By Torald Sollmann. IV. On the Chemical Composition and Physiological Characteristics of Brain Cephalin. By Frederic Feuger. V. The Pharmacology of Chelidonin, the Benzylisoquinoline Alkaloid of Chelidonium (Celandine or Tetterwort) and Stylophorum. By P. J. Hanzlik. | 1
27
43
51
63 | |--|---------------------------| | Number 2, September, 1921 | | | VI. The Physiological Action of N-Methylhistamine and of Tetrahydropyrido-3.4-Iminazole ("Imidazolisopiperidin" of Fränkel). By H. H. Dale and H. W. Dudley | 111
121
133 | | Number 3, October, 1921 | | | r 3 | | | XV. Studies on the Influence of Phenylcinchoninic Acid and the Ethyl Ester of Paramethylphenylcinchoninic Acid on Renal Excretion. By Victor C. Myers and John A. Killian | |---| | Number 4, November, 1921 | | XVII. A Simple Method for the Determination of the Coagulation Time of Blood in Animals. By O. Inchley | | Number 5, December, 1921 | | XXIII. The Effect of Hydrogen Ion Concentration on the Toxicity of Alkloids for Paramoecium. By Marian M. Crane | | Number 6, December, 1921 | | XXVII. The Toxicity of the Blood of Adrenalectomised Frogs. By C. H. Kellaway | | Propyl Diphenyl Amino-Carbinol. By M. L. Bonar and Torald Sollmann 467 | | Dog, male, 6 kgm., ether anesthesia (Fig. 1) | 3 | |--|------------| | — pithed, 13.3 kgm. (Fig. 2) | 4 | | —— pithed, 13.3 kgm. (Fig. 3) | 5 | | —— pithed, 9.2 kgm. (Fig. 4) | 6 | | One entire horn virgin guinea-pig's uterus (Fig. 5) | 13 | | entire horn virgin guinea-pig's uterus (Fig. 6) | 14 | | entire horn virgin guinea-pig's uterus (Fig. 7) | 15 | | —— entire horn virgin guinea-pig's uterus (Fig. 8) | 16 | | entire horn virgin guinea-pig's uterus (Fig. 9) | 17 | | Male dog, 5.8 kgm., paraldehyde anesthesia (Fig. 10) | 18 | | Dog, male, 5.8 kgm., paraldehyde anesthesia (?) (Fig. 11) | 19 | | Effect of injecting into the femoral vein of a pithed dog 4 cc. out of a total | | | quantity of 25 cc. aqueous solution of the chloroform extract of fraction I | | | (mercuric chloride tar) of posterior lobe (Fig. 12) | 20 | | of injecting into the femoral vein of a pithed dog 8 cc. out of a total | | | quantity of 100 cc. aqueous solution of the chloroform extract of fraction | | | I (mercuric chloride tar) of anterior lobe (Fig. 13) | 21 | | Shows that the apparatus employed for the preparation of figure 12 in which | | | the chloroform extract of the posterior lobe was shown to constrict the | | | bronchioles was not set to register small alterations in lung volume | | | (Fig. 14) | 22 | | Effect of injection into the femoral vein of a pithed dog 1 cc. solution of | | | pressor and oxytocic phosphate "A" = 11 mgm. prepared by decom- | | | posing the "proteid-HgCl2-precipitate" of Abel and Nagayama (Fig. 15) | 23 | | Shows the entire absence of broncho-motor action of 5.5 and 11 mgm. of | | | choline chloride injected into the femoral vein of a pithed dog (Fig. 16). | 24 | | Blood pressure of cat under ether (Fig. 1) | 32 | | — pressure of cat under ether (Fig. 2) | 33 | | Pituitary active principles and histamine (Fig. 3) | 34 | | active principles and histamine (Fig. 4) | 35 | | Blood pressure of cat under ether (Fig. 5) | 36 | | Pituitary active principles and histamine (Fig. 6) | 37 | | Effect of erepsin on oxytocic principle (Fig. 7) | 40 | | Effects of arsenic on the growth of rats (Fig. 1) | 44 | | Arsenic on food consumption (Fig. 2) | 47 | | Effects of chelidonin on cardiac volume, kidney volume and blood-pressure | | | of curarized and atropinized dog (18.5 kgm.) (Fig. 1) | 77 | | —— of chelidonin on perfused turtle's heart (Fig. 2) | 7 8 | | Longitudinal strip of dog's ureter in 150 cc. of Tyrode's solution (Fig 3) | 86 | | Dog's bladder; quiescent strip in 50 cc. Tyrode's solution (Fig. 4) | 86 | | Rabbit's aorta; ring preparation in 150 cc. Tyrode's solution (Fig. 5) | 86 | |--|------------| | Dog 15.2 kgm. Effect of chelidonin and hemorrhage on intestinal peristalsis, | | | blood-pressure and respiration (Fig. 6) | 88 | | Effect of chelidonin on untreated bronchi of decerebrated dog (6.5 kgm.) | | | (Fig. 7) | 93 | | — of chelidonin on bronchi of decerebrate cat (1.5 kgm.) (Fig. 8) | 93 | | Blood pressure of cat under ether (Fig. 1) | 105 | | Horn of guinea-pig's uterus suspended in 80 cc. Ringer solution (Fig. 2) | 105 | | Blood pressure of cat under ether (Fig. 3) | 109 | | Horn of guinea-pig's uterus suspended in 80 cc. Ringer solution (Fig. 4) | 109 | | Bronchus of pig (Fig. 1) | 114 | | Normal bronchus of pig (Fig. 2) | 114 | | Bronchus of pig (Fig. 3) | 115 | | Diseased bronchus of pig, freshly excised (Fig. 4) | 115 | | Section of pig's lung showing consolidation and inflammatory process | | | (Fig. 5), | 116 | | — of normal lung of pig (Fig. 6) | 116 | | Amyl nitrite effect upon portal pressure and liver volume in the dog (Fig. 1). | 157 | | Effect of the injection of 3 cc. of dog's urine upon the portal blood pressure | | | and liver volume in the dog (Fig. 2) | 160 | | Experiment H17. Effect of sodium salicylate on normal dog (Fig. 1) | 169 | | H15. Effect of sodium salicylate on coli fever dog (Fig. 2) | 169 | | | 170 | | H33. Effect of antipyrine on coli fever dog (Fig. 4) | 170 | | 1 | 171 | | | 171 | | • | 172
173 | | | 178 | | | 178 | | , | 187 | | Manner of suspending uterine horn of virgin rabbit (Fig. 1) | | | Uterus of non-pregnant multiparous rabbit (Fig. 3) | 188 | | Miltiparous rabbit, horn of the uterus split (Fig. 4) | 189 | | rabbit, whole uterus horn as in figure 1 (Fig. 5) | 189 | | Contractions of longitudinal and circular muscle of pregnant rabbit (Fig. 6) | 190 | | Virgin rabbit uterus suspended as in diagram (Fig. 7) | 191 | | rabbit. Nerves to right horn divided eighty-two days previously | | | (Fig. 8) | 192 | | rabbit uterus (Fig. 9) | 192 | | rabbit. Operated fifty-six days previously (Fig. 10) | 193 | | rabbit uterus (Fig. 11) | 193 | | rabbit. Nerves of right horn cut sixty-four days previously (Fig. 12) | 194 | | rabbit. Right horn cut sixty-four days previously (Fig. 13) | 194 | | Multiparous rabbit. Nerves of right horn cut twenty-two days previously | | | (Fig. 14) | 195 | | rabbit. Nerves to right horn cut twenty-two days previously (Fig. 15) | | | Rat's uterus (Fig. 16) | | | Nervous supply of uterus severed by cutting broad ligment (Fig. 17) | 198 | | Effect of epinephrin by rectum on intestinal peristalsis and carotid blood | | |--|-----| | pressure (Fig. 1) | | | Coagulation time of blood (Fig. 1) | 238 | | — time of blood (Fig. 2) | | | Influence of electric current on absorption of drugs, rabbits A and B (Fig. 1) | 244 | | - of electric current on absorption of drugs, blood pressure tracings | | | (Fig. 2) | | | —— of electric current on absorption of drugs, diagram of apparatus (Fig 3) | 246 | | of electric current on absorption of drugs, rabbit, 2.5 grams of urethane | | | (Fig. 4) | 247 | | - of electric current on absorption of drugs, guinea-pig, 300 grams of | | | urethane (Fig. 5) | 251 | | Isolated gut suspended in 75 cc. of Tyrode solution. Influence of serum | | | on pilocarpine action (Fig. 1) | 258 | | Influence of lecithin on pilocarpine action (Fig. 2) | | | — of cholesterine on pilocarpine action (Fig. 3) | | | — of cholesterine on pilocarpine action (Fig. 4) | 262 | | of cephalin on pilocarpine action (Fig. 5) | | | — of lecithin on histamine action (Fig. 6) | | | — of lecithin on histamine action (Fig. 7) | | | Isolated cat's intestine suspended in 75 cc. of Tyrode solution (Fig. 1) | | | — gut suspended in 75 cc. Tyrode solution (Fig. 2) | | | — gut suspended in 75 cc. Tyrode solution (Fig. 3) | | | — cat's intestine suspended in 75 cc. Tyrode solution (Fig. 4) | | | | | | Influence of adrenaline (Parke, Davis and Company) on blood pressure of a | | | fowl suffering from avitaminosis (Fig. 1) | 301 | | of pilocarpine hydrochloride and atropine sulfate on isolated gut of | | | normal fowl (Fig. 2a) | 303 | | — of pilocarpine and atropine on isolated gut of fowl suffering from experi- | 303 | | mental polyneuritis (Fig. 2b) | 303 | | Action of 0.05 mgm. of ergamine (Burroughs, Welcome and Company) on | - | | isolated gut of normal fowl (Fig. 3a) | 304 | | — of 0.005 mgm. of ergamine on isolated gut of fowl suffering from experi- | | | mental polyneuritis (Fig. 3b) | | | — of 0.1 mgm. of pilocarpine on isolated esophagus of fowl suffering from | | | experimental polyneuritis (Fig. 4) | 305 | | — of adrenaline on blood pressure of cat suffering from experimental | - | | polyneuritis (Fig. 5) | 308 | | Fall in blood pressure caused by 0.01 mgm. of ergamine in a cat suffering from | | | experimental polyneuritis (Fig. 6) | | | Action of 0.01 mgm. of pilocarpine on isolated gut of a cat suffering from | 900 | | polyneuritis (Fig. 7) | 310 | | Pig's bronchus (Fig. 1) | | | — bronchus (Fig. 2) | | | Bronchus of pig (Fig. 3) | | | — of pig (Fig. 4) | | | Surviving bronchus of pig (Fig. 5) | | | Pilocarpin hydrochloride, 1 mgm., produces marked contraction (Fig. 6) | | | 10,0, | 380 | |---|-----| | 1000 | 382 | | —— of pig (Fig. 9) 3 | | | of pig (Fig. 10) | | | — of pig (Fig. 11) | | | — of pig (Fig. 12) | | | — of pig (Fig. 13) | | | — of pig (Fig. 14) | 383 | | — of pig (Fig. 15) | | | —— of pig (Fig. 16) | | | of pig (Fig. 17) 3 | 385 | | —— of pig (Fig. 18) | | | —— of pig (Fig. 19) 3 | | | —— of pig (Fig. 20) | 389 | | — of pig (Fig. 21) 3 | | | — of pig (Fig. 22) 3 | 389 | | — of pig (Fig. 23) | 390 | | —— of pig (Fig. 24) | | | Perfused normal frog heart (Fig. 1) | 404 | | Uterine effects of intravenous injections. Dog 7 (Fig. 1) | 409 | | effects of intravenous injections. Dog. 4 (Fig. 2) | 411 | | —— effects of intravenous injections. Dog 18 (Fig. 3) | 412 | | effects of intravenous injections. Dog 18 (Fig. 4) | 413 | | —— effects of intravenous injections. Dog 3 (Fig. 5) | 416 | | — effects of intravenous injections. Dog 1 (Fig. 6) | | | effects of intravenous injections. Dog 14 (Fig. 7) | | | Fig. 1 | | | Isolated frog's heart perfused, movements of auricle and ventricle record | | | (Fig. 2) | 431 | | The action of thorium upon the frog's heart (Fig. 3) | 433 | | Frog's heart perfused with potassium-free Ringer (Fig. 4) | 434 | | Isolated auricle of rabbit suspended in Ringer (Fig. 5) | 437 | | The action of uranium upon the isolated auricle of the rabbit (Fig. 6) | 438 | | action of potassium, rubidium, caesium and thorium upon the isolated | | | rabbit's auricle when this is excited by lack of potassium (Fig. 7) | 439 | | action of potassium, rubidium, caesium and thorium in producing con- | | | tractions of the isolated uterus of the rabbit (Fig. 8) | 440 | | action of potassium, rubidium, caesium and thorium in producing con- | • | | | 441 | | —— effect of alteration of the potassium content of Ringer upon the vessels | | | | 442 | | — action of potassium, rubidium and thorium in inhibiting the hyper- | | | acidity of the rabbit's uterus produced by lack of potassium (Fig. 11) | 442 | | — action of uranium and rubidium in inhibiting the hyperacidity pro- | | | duced by lack of potassium in the isolated gut and uterus of the rabbit | | | (Fig. 12) | 442 | | — action of potassium, rubidium and caesium in inhibiting the hyper- | | | acidity produced by lack of potassium in the isolated gut of the rabbit | : | | (Fig. 13) | | | Relation of histamine to intestinal intoxication (Fig. 1) | | | Comparison of affective and toxic doses of anosthetics (Fig. 1) | |