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Non-Abbreviations 

CO: carbon monoxide 

D-4F: apolipoprotein A1 mimetic peptide 

DM: diabetes mellitus 

EC: endothelial cells 

eNOS: endothelial nitric oxide synthase 

EPC: endothelial progenitor cells 

HDL: high density lipoprotein 

i.p.: intraperitoneal 

LDL: low density lipoprotein 

MI: myocardial infarction 

NO: nitric oxide 

O2
-: superoxide anion 

ROS: reactive oxygen species 

SOD: superoxide dismutase 

TM: thrombomodulin 

HO: heme oxygenase 

CD31: endothelial cell marker 

STZ: streptozotocin 

GSH: glutathione in reduced form 

SD: Sprague-Dawley rats 

CEC: circulating endothelial cells 
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Abstract

Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, 

enhances the ability of high-density lipoprotein (HDL) to protect low-density lipoprotein 

(LDL) against oxidation in atherosclerotic disease. Using a rat model of Type I diabetes, 

we investigated whether chronic use of D-4F would lead to upregulation of HO-1, CD31+

and thrombomodulin (TM) expression, and increase the number of endothelial 

progenitor cells (EPC). Sprague-Dawley rats were rendered diabetic with streptozotocin 

(STZ) and either D-4F or vehicle was administered, by intraperitoneal injection, daily for 

6 weeks (100 µg/100 g body wt). HO activity was measured in liver, kidney, heart and 

aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart 

and aorta by 29 and 31% (p<0.05 and p<0.49), respectively. Long-term D-4F treatment 

also caused a significant increase in TM and CD31+ expression. D-4F administration 

increased antioxidant capacity, as reflected by the decrease in oxidized protein and 

oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase 

in EPC eNOS and prevention of vascular TM and CD31+ loss. In conclusion, HO-1 and 

eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase 

in TM and CD31+, the antioxidant and anti-inflammatory properties, and confers robust 

vascular protection in this animal model of Type 1 diabetes. 
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Introduction 

The development of the 4F peptides has previously been recorded in detail 

(Navab, et al., 2005b). The major protein in HDL is apolipoprotein A-I (apoA-I). It 

contains 243 amino acids. Based on the ability to form helixes similar to those in human 

apoA-I, Anantharamaiah and Segrest searched for peptides smaller than apoA-I. They 

found that an 18-amino acid peptide with the sequence D-W-L-K-A-F-Y-D-K-V-A-E-K-L-

K-E-A-F, which does not have any sequence homology with apoA-I, formed a class A 

amphipathic helix similar to those found in apoA-I.  They named this peptide 18A 

(Anantharamaiah, et al., 1985). The peptide 18A mimicked many of the lipid binding 

properties of apoA-I (Anantharamaiah, 1986). The lipid binding characteristics of 18A 

were improved by blocking the terminal charges (Ac-18A-NH2) and this modified 

improved peptide was named 2F to denote that it contains two phenylalanine residues, 

one each at positions 6 and 18 (Venkatachalapathi, et al., 1993;Venkatachalapathi, et 

al., 1993). Unfortunately, despite the ability to bind lipids similar to human apoA-I, 2F did 

not reduce lesions in a mouse model of atherosclerosis (Datta, et al., 2001). It was 

found that the best predictor of anti-inflammatory and anti-atherosclerosis activity was 

the ability of peptides to inhibit the induction of monocyte chemotactic activity in a 

culture of human aortic cells (Datta, et al., 2001). Two peptides that were particularly 

potent in this assay were tested in mouse models of atherosclerosis, 5F and 4F, which 

contained 5 and 4 phenylalanine residues on the hydrophobic face of the peptides, 

respectively. The peptide 5F (Ac-D-W-L-K-A-F-Y-D-K-V-F-E-K-F-K-E-F-F-NH2) when 

injected into mice given an atherogenic diet significantly inhibited lesion formation 

(Garber, et al., 2001). The 4F peptide (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2)
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when synthesized from all D-amino acids (D-4F) was found to be suitable for oral 

administration to mouse models of atherosclerosis and significantly inhibited lesion 

formation in young mice (Navab, et al., 2002). When D-4F was given orally together 

with pravastatin there was substantial synergy and regression of lesions was also found 

(Navab, et al., 2005a). 

D-4F re-establishes an antioxidant and anti-inflammatory phenotype through 

restoration of the balance between nitric oxide (NO) and superoxide (O2
-) production 

(Ou, et al., 2003;Ou, et al., 2005), which results in an improvement in vascular function 

(Rodella, et al., 2006;Ou, et al., 2005). Thus, D-4F decreases endothelial cell (EC) 

sloughing and apoptosis and restores vascular EC function (Rodella, et al., 2006), 

although a D-4F effect causing an increase in vascular repair has not been excluded. 

Endothelial cell dysfunction, demonstrated by the reduced expression of CD31+

and/or thrombomodulin (TM) (Sandusky, et al., 2002), has been reported within 

atherosclerotic blood vessels. A CD31+ gene abnormality has also been implicated in 

the pathogenesis of both atherosclerosis and myocardial infarction (MI). Furthermore, a 

reduction in plasma TM has also been associated with an increased risk of MI 

(Morange, et al., 2004). Conversely, increased expression of TM has been shown to 

limit thrombus formation as well as neointimal growth (Waugh, et al., 2000). Diabetes 

mellitus (DM) is a major risk factor in the development of atherosclerotic heart disease. 

The hyperglycemia-mediated generation of reactive oxygen species (ROS) and 

advanced glycosylation end products accelerate the formation of atherosclerotic lesions 

(Aronson and Rayfield, 2002), contributing to the pathogenesis of multiple vascular 

complications (Rodella, et al., 2006;Da Ros, et al., 2004;Aronson and Rayfield, 2002).  
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Type 1 diabetes has also been shown to reduce both the number and function of 

bone marrow-derived endothelial progenitor cells (EPC) (Loomans, et al., 2004). This 

could potentially contribute to the formation of atherosclerotic disease. There is growing 

evidence to suggest that proper vascular function relies not only on mature EC, but also 

on EPC (Asahara, et al., 1997). EPC have been shown to contribute to vascular 

remodeling in atherosclerosis (Sata, et al., 2002) and other cardiovascular diseases 

(Rafii and Lyden, 2003). More recently, HDL has been shown to provide vascular 

protection by increasing EPC in apolipoprotein E-deficient mice (Werner, et al., 2005).  

The recognition that HO-1 is strongly induced by its substrate heme and by 

oxidant stress, in conjunction with the robust ability of HO-1 to protect against oxidative 

insult in cardiovascular disease, suggests that HO-1 may be a target for 

pharmacological drugs in the alleviation of vascular diseases. The antioxidant effects of 

HO-1 arise from its capacity to degrade the heme moiety from destabilized heme 

proteins (Nath, et al., 2000) and to generate biliverdin and bilirubin, which are products 

of HO, which possess potent antioxidant properties. CO, an HO product as well, is not 

an antioxidant (Wiesel, et al., 2000) but can cause the induction of antioxidant genes, 

decrease O2
- levels  and increase GSH levels (Abraham and Kappas, 2005). HO-1-

derived bilirubin has also been shown to display cytoprotective properties in the 

cardiovascular system (Clark, et al., 2000). Numerous reports indicate that higher 

serum bilirubin levels are associated with a decrease in the risk for coronary artery 

disease in humans (Vitek, et al., 2002). We, and others, have previously shown that D-

4F has a beneficial effect on vascular function (Rodella, et al., 2006); however, the 

exact mechanism is not known. 
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The present study explores whether chronic D-4F administration leads to an 

increase in HO-1 activity specifically relevant to vascular cytoprotection, such as in the 

heart and aorta. We also investigated the effect of D-4F on the expression of both 

CD31+ and TM, markers for the onset of atherosclerosis, and on EPC numbers and 

function in an animal model of diabetes. We demonstrate, for the first time, that D-4F, 

by increasing HO-1 and eNOS and decreasing circulating oxidants, protected EPC 

function and increased the expression of CD31+ and TM. These data highlight the 

chronic effect of daily administration of D-4F in preventing vascular damage, rendering 

endothelial cells resistant to oxidants in this model of Type 1 diabetes.  
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Methods

Animal treatment: Male Sprague-Dawley (SD) rats (Charles River Lab, 

Wilmington, MA), weighing 170–190 g, were maintained on standard rat diet and tap 

water ad libitum. After rats were anesthetized by intraperitoneal (i.p.) injection of sodium 

pentobarbital (65 mg/kg body weight), diabetes was induced by a single injection, via 

the tail vein, of streptozotocin (STZ, Sigma, St. Louis, MO) (45 mg/kg body weight) 

dissolved in 0.05 mol/L citrate buffer (pH 4.5). Blood glucose levels were elevated 

(410+35 mg/dl) two days after the injection of STZ, but were maintained between 240-

320 mg/dl in all STZ-treated rats for the 6-week duration of the study by the 

administration of insulin (NPH 40-60 U/day/kg). Insulin was essential to assure that 

ketosis and weight loss were not significant. Glucose monitoring was performed using 

an automated analyzer (Lifescan Inc., Miligitas, CA). D-4F was given as a daily i.p. 

injection (100 µg/100 g body weight) for 6 weeks, beginning the day after the injection of 

STZ or sodium citrate buffer (in control rats). Four groups of rats were used: control, 

STZ alone, STZ plus D-4F, and D-4F alone. The Animal Care and Use Committee of 

New York Medical College approved all experiments.  

Tissue preparation for ultrastructural analysis: Aorta segments were 

removed and immediately fixed in 2% glutaraldehyde in phosphate buffer (pH 7.4). After 

12 hours, the specimens were washed in phosphate buffer, stained with uranyl acetate, 

dehydrated in decreasing acetone concentrations and embedded in Araldite. Semi-thin 

(1.5 µm thick) sections were cut by an ultramicrotome and stained with toluidine blue for 

light microscope observation and to identify the area for the ultrastructural analysis. 
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Sections were then cut and observed by a Philips CM10 transmission electron 

microscope. 

Detection and quantification of EPC in peripheral blood: Peripheral blood 

specimens were layered 1:1 onto a Ficoll-Paque Plus (GE Healthcare, Waukesha, WI) 

and centrifuged at room temperature for 35 minutes at 450 g. The mononuclear cell 

layer was removed and washed three times with PBS. Following the third wash, cells 

were suspended in 500 µl PBS, containing anti-RECA-1 (Novus Biologicals, Littleton, 

and CO) and and anti-CD34+ FITC conjugated antibody CD34+ (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA). FITC conjugated normal mouse IgG (Santa Cruz 

Biotechnology) was used as a negative control as described previously (Abraham, et 

al., 2003;Rodella, et al., 2006). 

Effect of hyperglycemia on EPC: The ability of bone marrow-derived cells to 

differentiate was quantified to determine the effects of diabetes and D-4F on EPC 

formation. Bone marrow hematopoietic colonies were prepared in methylcellulose 

cultures as described previously (Lutton, et al., 1993), and grown in the presence of 

VEGF (100 nM) to induce differentiation into EPC. Bone marrow from control rats (106

cells) was cultured at 37°C for 5-14 days. Additional cultures utilized bone marrow from 

rats treated in vivo with STZ and/or D-4F using the same technique. 

Immunohistochemical analysis: Aorta segments were collected and fixed in 

4% buffered formalin, cut by cryostat (5 µm thick) and stained for the EC markers, 

CD31+ and TM, using the Avidin-biotin-peroxidase method. Briefly, the sections were 

incubated with 3% hydrogen peroxide to quench endogenous peroxidase activity. The 

sections were then incubated for 1 hour at room temperature with monoclonal 
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antibodies to detect CD31+ (Pharmingen, Franklin Lakes, NJ) or TM (Labvision Corp., 

Fremont, CA). Primary antibody incubation was followed sequentially by biotinylated 

horse anti-mouse antibody (Vector Laboratories, Burlingame, CA) for 30 minutes then 

by ABC complex (Vector Laboratories, CA). Negative controls were obtained by omitting 

the immune serum as a substitute for the primary antibody. Diaminobenzidine was used 

as chromogen and hematoxylin was used as a nuclear counterstain. 

Protein analysis and HO activity: Heart, aorta, liver, kidney and EPC 

homogenates were used to measure HO activity as described previously (Rodella, et 

al., 2006). Western blot analysis of tissues or EPC cell homogenates was carried out to 

determine HO-1, HO-2 and eNOS protein expression (Abraham, et al., 2003;Rodella, et 

al., 2006). Protein levels were visualized by immunoblotting with antibodies against rat 

HO-1/HO-2 (Stressgen Biotechnologies Corp., Victoria, BC) and eNOS (Santa Cruz 

Biotechnology). Briefly, 20 µg of lysate supernatant was separated by 12% 

SDS/polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane, 

and chemiluminescence detection was performed with the Amersham ECL detection kit 

according to the manufacturer’s instructions (Amersham, Inc., Piscataway, NJ). 

Measurement of oxidative stress: Serum samples were collected from 

untreated and D-4F-treated diabetic and control rats for assessment of oxidative stress. 

Oxidized proteins (Cayman Chemical Co., Ann Arbor, MI) and LDL (Ox-LDL, Northwest 

Life Science Specialties, Vancouver, WA) were assayed using ELISA kits according to 

the manufacturer’s instructions. 

Statistical analyses: Data are presented as mean ± standard error (SE) for the 

number of experiments. Statistical significance (p<0.05) between experimental groups
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was determined by the Fisher method of analysis of multiple comparisons. For 

comparison between treatment groups, the null hypothesis was tested by a single-factor 

ANOVA for multiple groups or unpaired t test for two groups. 
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Results 

Effect of D-4F on glucose levels: As seen in Figure 1, D-4F had no effect on 

glucose levels. Glucose levels were maintained between 240-320 mg/dl to prevent 

weight loss. Insulin dose was individualized and thus dosages were different within the 

same group and were not significantly different between the groups. Under these 

conditions, body weight did not significantly change (Figure 1B). 

Effect of D-4F on HO activity: As seen in Figure 2A-D, HO activity was 

significantly increased in the heart and aorta in D-4F treated diabetic rats compared to 

organs obtained from untreated diabetic rats. Six weeks of D-4F treatment resulted in a 

significant increase in HO activity in the heart, n=3, (p<0.05). A similar increase was 

seen in aortic HO activity (p<0.01). No significant increases in HO activity were 

observed in the kidney or liver after treatment with D-4F (Figure 2B and C, respectively). 

Effect of D-4F on EC sloughing: The protective effect of D-4F on the 

vasculature was demonstrated by the direct quantification of circulating endothelial cells 

(CEC) in peripheral blood and confirmed by FACS analysis. The number of CEC in 

peripheral blood was significantly elevated in diabetic rats compared to control animals 

(50±6, and 4±3 cells/ml peripheral blood). Treatment with D-4F did not affect EC 

sloughing in control rats. However, in diabetic rats, D-4F attenuated EC sloughing to 

20±3 (cells/ml peripheral blood, p<0.003 vs. untreated diabetics, n= 13 ). FACS analysis 

was used to confirm the increase in CEC in diabetic rats and the reduction in CEC after 

D-4F treatment (Figure 3). Long-term treatment with D-4F caused a significant decrease 

in CEC (*p<0.05 vs. untreated diabetic rats), promoting endothelial cell survival. 
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Effect of D-4F on CD31+ and TM expression: Since D-4F had a beneficial 

effect on heart and aortic HO-1, we examined whether D-4F affected CD31+ and TM. 

Immunohistochemical staining for CD31+ (Figure 4) and TM (Figure 5) was conducted in 

aorta isolated from untreated and D-4F-treated diabetic rats. Staining appeared brown 

and was localized within the EC cytoplasm. In control animals, strong CD31+

immunoreactivity was seen in the aorta (Figure 4A). In diabetic animals, CD31+ staining 

was either weak or absent (Figure 4B); however, treatment with D-4F restored the 

pattern to that seen in controls (Figure 4C and D). TM staining was strong in the intima 

of control rats (Figure 5A) while diabetic rats demonstrated moderate to weak staining 

(Figure 5B). D-4F treatment restored TM expression in diabetic rats to the level of 

staining seen in controls (Figure 5C and D). Optical density analysis of 

immunohistochemical staining provided quantification of the changes in both CD31+

(Figure 4D) and TM (Figure 5D) expression. 

Effect of D-4F on EPC function: The effect of D-4F on EPC function was 

assayed in diabetic rats untreated or chronically administered D-4F (Figure 6). STZ-

induced diabetes reduced the formation of EPC colonies from 19.3±1.3 colonies in 

controls to 8.8±1.3 (p<0.001). In diabetic rats treated with D-4F, the number of EPC 

colonies improved to 17.3±1.5 (p<0.002 vs. STZ alone), approaching the level found in 

control animals.  

Effect of D-4F on HO-1 and eNOS in EPC: Since D-4F increased EPC function, 

as seen by the restoration in TM and CD31+, we examined the effect of D-4F on the 

levels of HO-1, HO-2 and eNOS in EPC after 10 days of culture. Figure 7A shows the 

changes in HO-1 (HO-2 is constitutively expressed and was unchanged) and eNOS 
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levels in response to STZ-induced diabetes and administration of D-4F. The effect of 

STZ-diabetes was to downregulate HO-1 protein expression. Optical density analysis of 

eNOS, expressed as a ratio to α-actin, revealed diminished levels of eNOS (0.17±0.04) 

in STZ-treated rats compared to controls. D-4F treatment produced eNOS expression in 

diabetic rats (0.30±0.03, p<0.05) similar to that in controls (Figure 7B). Treatment with 

D-4F prevented the loss of HO-1 protein expression to 0.19±0.02 (p<0.02), a level 

consistent with controls (Figure 7C). 

HO activity was 167.7±21.3 pmol bilirubin formed/mg protein in EPC obtained 

from diabetic rats compared to 268.7±35.5 pmol bilirubin formed/mg protein in controls 

(p<0.05). D-4F treatment increased HO activity to 317.3±23.7 pmol bilirubin formed/mg 

protein (p<0.005) in diabetic rats, but did not significantly affect HO activity in control 

rats (Figure 7D). 

Effect of D-4F on serum oxidative stress: The effects of STZ and D-4F on the 

levels of oxidative stress were assayed using ELISA for oxidized proteins (Figure 8A) 

and LDL (Figure 8B). Oxidized protein (carbonyl) content was elevated in diabetic rats 

(1.62±0.36 nmol/mg) compared to controls (1.20±0.13 nmol/mg, p<0.01). D-4F 

attenuated this increase (p<0.05 vs. untreated diabetic) in carbonyl content (1.33±0.19 

nmol/mg). The level of pro-atherogenic oxidized-LDL was elevated in diabetic rats 

(11.76±0.82 units/l) compared to controls (8.12±1.47 units/l, p<0.02). D-4F reduced the 

level of oxidized-LDL (p<0.05 vs. untreated diabetic rats) to 9.18±1.06 (units/l), a level 

consistent with that found in controls. These results suggest that D-4F has a beneficial 

effect on the vascular system, preventing oxidative stress and restoring EPC function. 
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Discussion 

We have demonstrated, in this study, that daily administration of D-4F prevents 

the loss of EPC function and contributes to vascular repair in diabetic rats. Four 

observations support this conclusion. First, D-4F selectively increased HO-1 expression 

in the aorta and heart, an observation not seen in the liver or kidney. Second, the 

increases in HO-1-derived CO and bilirubin in EPC, following the upregulation of HO-1 

via D-4F administration, paralleled the increases in TM and CD31+ expression. HO-1 

derived CO and bilirubin have been shown to prevent endothelial cell death and 

apoptosis both in vitro and in vivo (Abraham, et al., 2003;Rodella, et al., 2006;Pileggi, et 

al., 2001;Ye and Laychock, 1998). Third, increases in ox-LDL and oxidized proteins 

were prevented by chronic administration of D-4F. The hyperglycemia-mediated 

increases in ROS generation and O2
- production contribute to vascular endothelial cell 

dysfunction and apoptosis (Rodella, et al., 2006;Turkseven, et al., 2005), and have 

been shown to be reversed by the induction of HO-1 (Rodella, et al., 2006;Turkseven, et 

al., 2005). Fourth, chronic administration of D-4F changed the diabetic EPC from a 

naïve to a defensive phenotype by producing a robust increase in eNOS and HO-1, as 

reflected by an increase in EPC function in culture and in vivo. The salutary effect of D-

4F was reflected by the increases in TM and CD31+ expression. Reduced EC 

expression of CD31+ and TM, an important indicator of endothelial cell death, is 

associated with the progression of atherosclerotic heart disease (Sandusky, et al., 

2002), while restoration of their expression prevents atherosclerosis and myocardial 

infarction (Morange, et al., 2004). 
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Our results are in agreement with previous studies showing that the 

downregulation of TM expression in EC occurs in coronary atherosclerosis in humans. 

Prevention of the diabetes-induced decrease in EC expression of CD31+ and TM 

provides an insight into the mechanism(s) of the anti-atherosclerotic properties of D-4F 

(Navab, et al., 2004a;Navab, et al., 2004b). The D-4F-mediated increase in CD31+ and 

TM expression in the aorta of diabetic rats suggests that an increase in EPC function, 

leading to the repair of the endothelium, may be a contributing factor to the increases in 

TM and CD31+.

Our results do not distinguish whether D-4F caused an increase in existing EC 

regeneration within the diabetic aorta or whether the increase was due to new EPC 

function. Regardless of the mechanism, chronic treatment with D-4F caused restoration 

of both TM and CD31+ and increased vascular repair, which would be considered 

clinically relevant in diabetes. The increase in TM and CD31+ limits neointima formation 

and EC dysfunction. The diminished function of vascular EC that occurs with diabetes 

(Waugh, et al., 2000) is accompanied by a reduction in EPC function (Loomans, et al., 

2004), which further impacts the integrity of the intact endothelial lining.  

The increases in HO-1 and eNOS, induced by the chronic administration of D-4F, 

are likely major factors in EPC protection. This is of particular interest because reversal 

drugs, such as the statins, known for their anti-atherosclerotic properties, have been 

shown to increase both HO-1 and eNOS. Statins have a strong positive effect on HO-1 

protein (Grosser, et al., 2004) and eNOS (Li and Mehta, 2003) expression, and reduce 

in adhesion molecules (Li and Mehta, 2003). The increase of HO-1 and eNOS explains 

the mechanism by which the statins exert antioxidant properties, as seen by the 
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decrease in oxidized LDL. Therefore, the chronic effects of D-4F administration, with the 

resulting decrease in oxidized LDL and oxidized proteins, may be attributed to the D-4F-

mediated increase in both eNOS and HO-1. 

HO-1 is induced under a wide variety of conditions associated with oxidative 

stress and is regarded as a protective response to oxidants. In the present study, we 

report that HO-1 and eNOS protein levels were restored in isolated mononuclear cells 

by chronic D-4F treatment. An increase in HO-1 will increase heme degradation and 

has the associated beneficial effect of increasing CO and bilirubin, which are important 

regulators of vascular function. Bilirubin is an important antioxidant in humans and an 

increase in serum levels prevent cardiovascular disease, as has been seen in Gilbert’s 

disease (Vitek, et al., 2002). HO-1 upregulation also increases the expression of eNOS 

and superoxide dismutase (Turkseven, et al., 2005), which contribute to the reduction in 

oxidized protein levels in serum, leading to vascular repair. These results are also in 

agreement with the reported beneficial effect of eNOS on EPC function (Aicher, et al., 

2003).  

HO-1 has been reported to be localized within foam cells that contribute to the 

formation of atherosclerotic lesions (Nakayama, et al., 2001). A decrease in HO activity 

has been shown to result in the accelerated formation of atherosclerotic lesions in 

native vessels (Yet, et al., 2003;Ishikawa, et al., 2001a) and vein grafts (Yet, et al., 

2003). Induction of HO-1 inhibits the formation of oxidized LDL with the resultant 

prevention of the formation of atherosclerotic lesions (Ishikawa, et al., 2001b). The fact 

that D-4F increases the levels of CO and bilirubin as well as eNOS in EPC suggests 
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that D-4F has a clinically relevant role in reducing pro-atherogenic ox-LDL in diabetic 

rats and may have an anti-inflammatory effect on the vascular system. 

In conclusion, chronic D-4F treatment resulted in modulating the EPC phenotype, 

as reflected by the increases in HO-1 and eNOS, which may contribute to the increased 

levels of aortic CD31+ and TM. Therefore, HO-1 and eNOS are considered relevant 

targets for D-4F. They promote EC cell survival, affording vascular cytoprotection in 

diabetic animals. 
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Legends for Figures  

Figure 1. (A) Serum glucose in control and STZ-treated rats. Diabetes was induced by 

a single injection of STZ (45 mg/kg bw). (B) Total body weight gain or loss for control 

diabetic rats (n=6). 

Figure 2. Effect of D-4F on HO activity in heart (A), kidney (B), liver (C) and aorta (D).

Rats were chronically treated with or without D-4F as described in Methods (n=3). 

Results are expressed as the mean ± SE of bilirubin formed mg/60 min. *p<0.05 is 

significant compared to the corresponding control. 

Figure 3. FACS analysis of RECA-1 positive cells (arrows) in the peripheral blood of 

control (left panel), STZ-induced diabetic (center panel), and D-4F treated diabetic (right 

panel) rats; *p<0.05 vs. control, †p<0.003 vs. STZ treated (n=13).  

Figure 4. Immunohistochemical staining of CD31+ EC (arrows) from control (A),

diabetic (B) and D-4F treated diabetic rats (C). Optical density analysis (D)

demonstrates the loss of CD31+ staining in diabetes and preventing its loss by D-4F; 

*p<0.05 vs. control, †p<0.05 vs. STZ treated; I=Intima; M=Media (n=4). 

Figure 5. Immunohistochemical staining of TM in EC (arrows) from control (A), diabetic 

(B) and D-4F treated diabetic rats (C). Optical density analysis (D) demonstrates the 

loss of TM staining in diabetes and its restoration by D-4F; *p<0.05 vs. control, †p<0.05 

vs. STZ treated; I=Intima; M=Media (n=4). 
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Figure 6. EPC formation was assayed in ex vivo mononuclear cells marrow cultures 

from control and STZ-treated rats and rats treated with D-4F (n=4); *p<0.001, †p<0.002. 

Figure 7. (A) Representative Western blots for eNOS, HO-1, HO-2 and actin in STZ-

and D-4F treated rats. (B) Optical density of eNOS/ actin (n=3); *p<0.05 vs. control, 

†p<0.05 vs. STZ. (C) HO activity in mononuclear cells taken from control and diabetic 

rats; (n=3), *p<0.05 vs. control, †p<0.005 vs. STZ treated.  

Figure 8. (A) ELISA analysis for the presence of oxidized proteins in the serum of STZ-

and D-4F treated rats; (n=3), *p<0.01 vs. control, †p<0.05 vs. STZ treated. (B)

Presence of pro-atherogenic oxidized LDL was assayed using ELISA; p<0.02 vs. 

control, †p<0.04 vs. STZ treated. 
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